
This document introduces and describes version 1.0 of the Behavior Markup Language standard. It
contains background information, descriptions of typical use contexts, and, most importantly, the syntactic
and semantic details of the XML format of the Behavior Markup Language.

1

Introduction

The Behavior Markup Language, or BML, is an XML description language for controlling the verbal and
nonverbal behavior of (humanoid) embodied conversational agents (ECAs). A BML block (see figure 1) de-
scribes the physical realization of behaviors (such as speech and gesture) and the synchronization constraints
between these behaviors. BML is not concerned with the communicative intent underlying the requested
behaviors. The module that executes behaviors specified in BML on the embodiment of the ECA is called
a BML Realizer.

Figure 1: Example of a BML Request

The BML Standard consists of a small and lean core, plus a few clearly defined mechanisms for extending
the language.

Lean Core

Full Name BML Core Standard
Status Required
XML Namespace http://www.bml-initiative.org/bml/bml-1.0
Examples basic speech, pointing gestures

The Core of the BML Standard defines the form and use of BML blocks, mechanisms for synchronization, the
basic rules for feedback about the processing of BML messages (see later in this document), plus a number of
generic basic behaviors. BML compliant realizers implement the complete BML Core Standard and provide
a meaningful execution for all its behavior elements. Some realizers might offer only partial compliance,
for example because they only steer a head (and therefore do not need to interpret bodily behaviors). In
that case, a realizer should at least provide an exception/warning feedback when being requested to execute
unsupported Core Standard behaviors (see Feedback).

Core Extensions

Full Name BML Core Extensions
Status Optional, but if a realizer implements the functionality of a Core Extension, it

should exactly follow the standard specification.
XML Namespace http://www.bml-initiative.org/bml/... (last part is specified in the definition of

the Core Extension)
Examples FACS face expressions, SSML description extension for speech

BML provides several standardized mechanisms for extension. One can define new behaviors (in a custom
namespace), or extend upon Core behaviors by adding custom attributes. Description extensions provide

2

a standardized manner for a user to give more detail about how the BML Realizer should realize a given
instance of a core behavior, while allowing a fallback to the Core specification when the BML Realizer does
not support the extension.

The BML standard defines a number of Core Extensions, both in the form of additional behaviors and
in the form of description extensions. The Core Extensions provide behaviors and description extensions
that we do not want to make mandatory, but we do want to be implemented in a standardized way when-
ever a BML Realizer implements them. We encourage authors of realizers to collaborate and define shared
behavior types and descriptions beyond those provided by the core extensions.

3

Global Context

SAIBA

The Behavior Markup Language is part of the SAIBA multi-modal Behavior Generation Framework (see
Figure 2). In this framework, the intention for the ECA to express something arises in the Intent Planner

¯
.

The Behavior Planner
¯

is responsible for deciding which multi-modal behaviors to choose for expressing the
communicative intent (through speech, face expressions, gestures, etc) and for specifying proper synchroniza-
tion between the various modalities. This multi-modal behavior is specified in the form of BML messages.
A BML Realizer

¯
is responsible for physically realizing the specified BML message through sound and mo-

tion (animation, robot movement, ...), in such a way that the time constraints specified in the BML block
are satisfied. At runtime, the BML realizer sends back feedback messages to keep the planning modules
updated about the progress and result of the realization of previously sent BML messages, allowing, e.g., for
monitoring and possible error recovery.

Figure 2: SAIBA Framework

The exact nature of the intent and behavior planning processes is left unspecified here. As far as the BML
Realizer is concerned, it makes no difference whether BML messages are the result of a complicated multi-
modal affective dialog system, or are simply predefined BML messages pulled from a library of pre-authored
materials.

BML Messaging Architecture

BML does not prescribe a specific message transport. Different architectures have drastically different notions
of a message. A message may come in the form of a string, an XML document or DOM, a message object,
or just a function call. However, no matter what message transport is used, the transport and routing layer
should adhere to the following requirements:

• Messages must be received in sent order.

• Messages must contain specific contents that can be fully expressed as XML expressions in the format
detailed in this document.

Currently, there are two types of messages:

BML Requests

• Sent by the Behavior Planner to the Behavior Realizer.

• BML requests are sent as <bml> blocks containing a number of behavior elements with synchronization.

Feedback Messages

• Sent by the Behavior Realizer.

• Used to inform the planner (and possibly other processes) of the progress of the realization process.

4

The BML Realizer

Conceptually, BML Realizers execute a multi-modal plan that is incrementally constructed (scheduled) on
the basis of a stream of incoming BML Requests (see Figure 3)). A BML Realizer is responsible for executing
the behaviors specified in each BML request sent to it, in such a way that the time constraints specified in
the BML request are satisfied. If a new request is sent before the realization of previous requests has been
completed, a composition attribute determines how to combine the behaviors in the new request with the
behaviors from earlier requests (see documentation of composition attribute).
Each BML Request represents a scheduling boundary. That is: if behaviors are in the same BML request,
this means that the constraints between them are resolved before any of the behaviors in the request is
executed.

Figure 3: Dealing with an incoming stream of BML Requests

The State of an ECA

BML assumes that there is something like a ground state of the ECA (Embodied Conversational Agent).
This state comprises several elements, such as the permanent posture or the ground state of the face. For
example, when a temporary <<posture>> behavior ends, the ECA reverts to the posture defined in the
ground state; when a temporary face expression ends, the face of the ECA reverts to a ground state. Some
types of behavior have a residual effect. That is, after the end time of the behavior has been reached, the
ground state of the ECA will be different than before the behavior started. Such behaviors are generally
names <<...Shift>>. Details can be found at the documentation of each particular element; here we
present a table of dimensions to the ground state of the ECA, and behaviors that may influence this ground
state.

Ground state aspect Behaviors that change this state
Body posture <postureShift>
Head pose <headDirectionShift>
Face expression <faceShift>
Gaze direction <gazeShift>
Location in the world <locomotion>

5

XML Format: Values and Types

Before describing the various XML elements in the BML Standard, we describe here the available attribute
types.
We use camelCase throughout for element names and attribute names. Values of type openSetItem and
closedSetItem defined in this document are generally all uppercase. The names of default syncpoints for
various behavior types are also written in camelCase (e.g., strokeStart).

Attribute Value Types

Values for various types of behavior attributes can be one of the following:

Type Description
ID An identifier that is unique within a specified context (see <bml>and ”behavior

element”). Adheres to standard XML type ID
syncref Describes the relative timing of sync points (see the section on synchronisation)

worldObjectID Uunique ID of an object in the character’s world. Adheres to standard XML type
ID

targetID Unique ID referring to a target in the character’s world. Adheres to standard XML
type ID

closedSetItem A string member from a closed set of strings, where the standard will provide the
exhaustive list of strings in the set.

openSetItem A string member from an open set of strings, where the standard may provide a few
common strings in the set.

bool Boolean value, either true or false
int Integer

float Decimal number
angle Decimal number signifying angle in degrees counterclockwise, between (-180, 180].
string An arbitrary string

direction A particular closedSetItem type from the ClosedSet [LEFT, RIGHT, UP, DOWN,
FRONT, BACK, UPRIGHT, UPLEFT, DOWNLEFT, DOWNRIGHT]

vector a string of format "float; float; float" indicating the x, y, and z coordinates
of a vector

Coordinate System and Units

While we prefer specifying behavior by common verbs and nouns, for some attributes or applications it is
unavoidable to use precise vectors.

• All units are metric (kilograms, meters, seconds).

• BML assumes a global coordinate system in which the positive Y-axis is up. The local (character-
based) coordinate system1 adheres to the guidelines of the H-Anim standard (v1.1 and H-Anim):
”The humanoid shall be modeled in a standing position, facing in the +Z direction with +Y up and
+X to the humanoid’s left. The local character-based origin (0, 0, 0) shall be located at ground level,
between the humanoid’s feet.”

Currently, there are no expressions in BML 1.0 that actually use the local character based coordinate system.
However, future versions may introduce references such as ”2 meters to the left of the character”.

6

BML Request

<bml>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <bml>
Attributes characterId, id, composition
Contents behaviors of various types, <required> blocks, <constraint> blocks

All BML behaviors must belong to a <bml> behavior block. A <bml> block is formed by placing one or
more BML behavior elements inside a top-level <bml> element. Unless synchronization is specified (see the
section on synchronization), it is assumed that all behaviors in a <bml> block start at the same time after
arriving at the BML realizer.

Syntax

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
id="bml1" characterId="Alice" composition="MERGE">

</bml>

Attributes

Attribute Type Use Default Description
id ID required Unique ID that allows referencing to a par-

ticular <bml> block. The id ’bml’ is re-
served.

characterId worldObjectID optional "" A reference towards the controlled character
composition openSetItem optional MERGE One among [MERGE, APPEND, RE-

PLACE], defines the composition policy to
apply if the current <bml> block overlaps
with previous such blocks (see below).

Semantics

No Communicative Meaning

The BML specification does not prescribe a communicative meaning for the BML Request. This allows
users of BML to specify short spurts of behavior (for example: speech clauses or individual gaze shifts) and
generate performances incrementally, or, if they prefer, to construct elaborate performances as a whole and
send them in a single request (for example: entire monologues).

Ordering is not meaningful

The order of elements inside the <bml> block does not have any semantic meaning. Authors writing BML
expressions should not rely on a BML Realizer realizing something in a certain order because it is in a certain
order in the BML block

Start time, end time, delays

Each <bml> request represents a scheduling boundary. That is: if behaviors are in the same <bml> request,
this means that the constraints between them are resolved before any of the behaviors in the request is
executed.

7

start time –– the start time of a block b is the global timestamp when it actually starts being exe-
cuted. The start time may be influenced by various delays, as well as by the composition attribute (both
explained further below).
end time –– the end time of a block is the global timestamp when all behaviors in the block have ended.

When a planner sends a <bml> request to a realizer, there will be a slight (hopefully negligible) delay before
the behavior actually starts being performed on the embodiment. The transport and routing layer supporting
the transmission of a sequence of <bml>blocks will introduce a transmission delay; parsing the request and
solving the constraints may introduce another delay.

Composition

If a new request is sent before the realization of previous requests has been completed, a composition attribute
determines how to combine the behaviors in the new <bml> block with the behaviors from prior <bml>
blocks. The values for the composition attribute have the following meaning.

• MERGE (default) — The start time of the new <bml> block will be as soon as possible. The
behaviors specified in the new <bml> block will be realized together with the behaviors specified in
prior <bml> blocks. In case of conflict, behaviors in the newly merged <bml>block cannot modify
behaviors defined by prior <bml> blocks.

• APPEND — The start time of the new block will be as soon as possible after the end time of all
prior blocks.

• REPLACE — The start time of the new block will be as soon as possible. The new block will
completely replace all prior <bml> blocks. All behavior specified in earlier blocks will be ended and
the ECA will revert to a neutral state before the new block starts.

As an example of a merge conflict, one might consider two consecutive <bml> blocks that both specify a
right handed gesture, with the timing being such that they should be performed at the same time. When this
turns out to be impossible, the gesture in the block that arrived last should be dropped, and an appropriate
warning should be issued (see Feedback section)

8

<required>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <required>
Attributes none
Contents behaviors of various types, <constraint> blocks

It is generally assumed that the behavior realizer will attempt to realize all behaviors in a block, but if
some of the behaviors don’t successfully complete for some reason, other behaviors still get carried out (see
Feedback and Failure and Fallback).

If there is an all-or-nothing requirement for all or some of the behaviors, they can be enclosed in a
<required> block inside the <bml> block.

<bml id="bml1" xmlns="http://www.bml-initiative.org/bml/bml-1.0" characterId="Alice">
<required>

<gaze id="gaze1" target="PERSON1"/>
<speech id="speech1"><text>Welcome to my humble abode</text></speech>

</required>
<head id="nod1" type="NOD"/>

</bml>

Semantics

If behaviors or constraints enclosed in a <required> block cannot be realized, the complete <bml>block
of which the <required> block is a part should be aborted, with appropriate feedback.

In the following example, the entire performance in the <bml>block will be aborted if either the gaze
or the speech behavior is unsuccessful (and an appropriate feedback message sent back from the behavior
realizer, see Feedback section), but if only the head nod is unsuccessful, the rest will be carried out regardless
(and an appropriate feedback message sent back from the behavior realizer).

9

Behaviors (Common Aspects)

A behavior element describes one kind of a behavior to the behavior realizer. In its simplest form, a behavior
element is a single XML tag with a few key attributes.

<bml id="bml1" xmlns="http://www.bml-initiative.org/bml/bml-1.0" character="Alice">
<gaze id="gaze1" target="PERSON1"/>

</bml>

Syntax

This document specifies a number of XML elements for specifying various sorts of behavior. Any behavior
element has at least the following attributes:

Attribute Type Use Default Description
id ID required "" Unique ID that allows referencing to a particular behav-

ior. The id ’bml’ is reserved.
start syncref optional Determines the start time of the behavior, either as offset

relative to the start time of the enclosing <bml> block,
or relative to another behavior contained in this block or
in another block. If no syncref are specified for this
behavior, start time is 0; if start is unspecified but other
syncrefs are given for this behavior, start is determined
by the other syncref (and the possible duration for
this behavior).

end syncref optional MERGE local end time of the behavior, either as offset relative
to the start time of the enclosing <bml> block, or rel-
ative to another behavior contained in this block or in
another block. If unspecified, the end time will be de-
pendent on the start time, other syncrefs specified on
this behavior, and the possible duration of the behavior.

In addition, there may be sync attributes concerning other default sync points for a specific behavior
type.

Semantics

There are a few aspects concerning the semantics of behaviors that are common to all behavior types.

Timing and Synchronization

Unless synchronization or timing constraints are specified, it is assumed that all behaviors in a <bml> block
start at the start time of the <bml> block. In the section on synchronization, more detail is given concerning
how to specify such constraints.

Targets in the world

Some of the behavior types specified in this document, require reference to a target in the world (gaze
target, point target, ...). A BML Realizer may assume a number of predefined targets, referenced by an
attribute value of type worldObjectID.

For next version, we are working on working out a ”target” element that allows more control over speci-
fication and modification of targets in the world.

10

Behaviors with residual effect

Some types of behavior have a residual effect. That is, after the end time of the behavior has been reached,
the ground state of the ECA will be different than before the behavior started.

An example of a behavior type with a residual effect is <locomotion>: after a <locomotion> behavior
has been completed, part of the ground state of the ECA (in this case: location and orientation in the world)
will be different than before, and other behaviors will be realized from this new ground state.

An example of a behavior type without a residual effect is <point>: usually, realization of a <point>
behavior involves a final retraction phase that returns the ECA back to the ground state in which it was
before starting realization of the <point> behavior.

A number of behavior types exist both in a version with and without residual effect. For example, af-
ter completion of a <face> behavior, the face of the ECA returns to the state it was in before the <face>
behavior started, but a <faceShift> behavior will cause the face of the ECA to have a new ground state.

When both versions of a behavior are active at the same time, the version without residual effect has
priority for being displayed, but the ground state is nevertheless changed by the behavior with residual
effect.

11

Synchronization

For every behavior, its realization may be broken down into phases. Each phase is bounded by a sync-point
that carries the name of the transition it represents, making it relatively straight-forward to align behaviors
at meaningful boundaries (see Figure 4 for an example of the sync points for gestures). In the example
below, the speech behavior and the point gesture are aligned at their start times.

Figure 4: Synchronisation points for a gesture

Syntax

Synchronization is specified by assigning a syncref value to one or more of the sync attributes of a behavior.
A syncref value is one of the following two forms:

[block id:]behavior id:sync id [+/- offset]
A reference to a sync point of another behavior, optionally with a float offset in seconds. By default, this is
a behavior in the same <bml> block that the syncref is contained in if optional prefix block id is present,
the syncref specifies a sync point of a behavior in the <bml> block with that ID.)

offset
A positive float offset in seconds relative to the start time of the surrounding <bml> block.

<!-- Timing example behaviors -->
<gaze start="0.3" end="2.14" /><!--absolute timing in seconds-->
<gaze stroke="behavior1:stroke" /><!--relative to another behavior -->
<gaze ready="behavior1:relax + 1.1" /><!--relative to another behavior, with offset-->
<gaze ready="bml3:behavior1:relax" /><!--relative to a behavior in another block-->

12

<constraint>

The <constraint> element provides a container for specifying additional constraints on the performance.
BML 1.0 only defines three timing constraints:

• <synchronize> declares one or more sync points should be synchronized with a referenced sync-point
notation

• <before> declares one or more sync points should be performed before a referenced sync-point nota-
tion

• <after> declares one or more sync points should be performed after a referenced sync-point notation

13

<synchronize>

<synchronize> constraints perform just like the sync-point attribute constraints, performing the sync-
points of two or more behaviors at the same time.

<constraint>
<synchronize>

<sync ref="speech1:sync4"/>
<sync ref="beat1:stroke:2"/>
<sync ref="nod1:stroke"/>

</synchronize>
</constraint>

This generalizes the attribute notation in three ways:

• A constraint can synchronize sync-points that do not have an attribute notation, such as speech word
breaks and multi-stroke rhythmic gestures.

• A constraint can synchronize more than two behaviors to the same point.

• A constraint can remain optional (outside any <required> element) while the presence of the be-
haviors is still <required>.

14

<before>

<before> constrains one or more sync-points to perform before a specified sync-point notation.

<constraint>
<before ref="speech_1:start">

<sync ref="gaze_1:stroke"/>
</before>

</constraint>

This constraint example requires the gaze 1 to acquire target (complete the stroke sync-point) before
beginning speech 1.

15

<after>

<after> constrains one or more sync-points to perform before a specified sync-point notation.

<constraint>
<after ref="speech_1:end+2">

<sync ref="gaze_1:relax"/>
</after>

</constraint>

This constraint example requires two seconds to pass after speech 1 completes before relaxing gaze 1.
Extending <constraint>

We encourage BML developers to experiment with using the constraint element for the alternative func-
tions through the use of namespaced elements and <description> extensions, for example:

• To specify some tolerance range for a synchronization operation.

• To specify a certain priority for a particular synchronization operation.

• To specify non-timing constraints such as modality

16

<wait>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <wait>
Sync Points start, end
Attributes id, duration, start, end
Contents none

The <wait> element is a NO-OP behavior that facilitates flexible waiting times between behaviors.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<speech id="behavior1" start="0">
<text>Good morning.</text>

</speech>
<wait id="behavior2" start="behavior1:end" duration="1"/>
<speech id="behavior3" start="behavior2:end">

<text>Goodbye.</text>
</speech>

</bml>

Example: Wait for one second between the two speech fragments.

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular behavior.

The id ’bml’ is reserved.
duration float optional the duration of the wait in seconds

start float optional start of wait
end float optional end of wait

17

Semantics

The synchronization constraints described above are all bidirectional. That is:

<head id="head1" stroke="gesture1:stroke" ... />

means that the strokes of head1 and gesture1 should be aligned. This synchronization constraint must be
interpreted bidirectional: the exact same time constraint can be expressed by:

<gesture id="gesture1" stroke="head1:stroke" ... />

Default Sync Points and their Sync Attributes

All behaviors have sync points called start and end. Furthermore, for each behavior type a number of
additional default sync points may be available. For every default sync point, the corresponding behavior
XML element has a sync attribute of the same name.

New Sync Points

New sync points can be introduced for specific behavior types or description extensions. For example, in
speech one can use the special <sync> tag to insert additional sync points in speech.

When new sync-points are introduced for a behavior, it is assumed that start and end will still refer to
the first and last sync-point for that behavior.

18

Face Behaviours

The face can be controlled through various mechanisms. The <faceLexeme> behavior offers a range of
predefined expressions such as ”RAISE EYEBROWS”; a limited set of mandatory lexemes is defined that
should be offered by any BML Realizer. The optional <faceFacs> Core Extension allows precise control
of the face in terms of the Facial Action Coding Scheme of Ekman. Finally, <face> and <faceShift>
allow one to combine a set of partial expressions into one compound face expression, where the former is
temporary, and the latter changes the BASE state of the ECAs face.

All face behavior types use the same set of sync points start, attackPeak, relax, and end. These sync
points define a dynamic progress like in Figure 6 below. By using the Core Extension attribute overshoot,
one can use these same alignment points to achieve a dynamic progress like in Figure 7, where attackPeak
is the peak point of the initial overshoot of the face expression.

Figure 6: Onset/apex/offset dynamics specified using the sync points and the amount attribute.
Figure 7: Attack/sustain/release dynamics specified using the sync points and the amount attribute plus the
Core Extension overshoot attribute.

Shared face attributes

Attributes

Attribute Type Use Default Description
id ID required Unique ID that allows referencing to a particular behavior.

The id ’bml’ is reserved.
amount float optional 0.5 A float value between 0..1 to indicate the amount to which

the expression should be shown on the face, 0 meaning ’not
at all’ and 1 meaning ’maximum, highly exaggerated’

Sync Attributes

Attribute Description
start Beginning of face expression

attackPeak Maximum expression achieved
relax Decay phase starts, not for <faceShift> behaviors!
end Face expression ended, not for <faceShift> behaviors!

Overshoot Core Extension Attribute

Attribute Type Use Default Description
overshoot float optional 0 Fraction of overshoot of the attack peak, relative to amount

(which defines the level of the sustain phase).

19

<faceLexeme>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <faceLexeme>
Sync Points start, attackPeak, relax, end
Attributes id, lexeme, amount, sync attributes (see above), overshoot (extension)
Contents none

This behavior shows a (partial) face expression from a predefined lexicon. A faceLexeme is a convenience
shorthand for combinations of more detailed low level face controls. The provided set of core lexemes allows
one to perform face expressions using meaningful lexeme names, which are easier to learn than the (more
detailed) Action Units provided by the faceFacs element.

Example: Raise both eye brows for 4 seconds.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0" character="Alice" id="bml1">
<faceLexeme id="behavior1" lexeme="RAISE_BROWS" amount="0.8" start="0" end="4"/>

</bml>

Attributes

Attribute Type Use Default Description
lexeme openSetItem require Member of a set of lexemes (See table below)

The following table shows suggested interpretations that a BML Realizer can use for the lexemes using
Ekman’s Facial Action Coding System. To offer the user more detailed control of the face, providing an
implementation of the <faceFacs> element is suggested.

Lexeme ACS equivalent
OBLIQUE BROWS AU1+AU4 both sides
RAISE BROWS AU1+AU2 both sides
RAISE LEFT BROW AU1+AU2 left side
RAISE RIGHT BROW AU1+AU2 right side
LOWER BROWS AU4 both sides
LOWER LEFT BROW AU4 left side
LOWER RIGHT BROW AU4 right side
LOWER MOUTH CORNERS AU15 both sides
LOWER LEFT MOUTH CORNER AU15 left side
LOWER RIGHT MOUTH CORNER AU15 right side
RAISE MOUTH CORNERS AU12 both sides
RAISE LEFT MOUTH CORNER AU12 left side
RAISE RIGHT MOUTH CORNER AU12 right side
OPEN MOUTH AU25+AU26
OPEN LIPS AU25
WIDEN EYES AU5+AU7
CLOSE EYES AU43

20

<faceFacs> (Core Extension)

Namespace http://www.bml-initiative.org/bml/coreextensions-1.0
Element <faceFacs>
Sync Points start, attackPeak, relax, end
Attributes id, au, side, amount, sync attributes (see above), overshoot (core extension)
Contents none

This behavior provides control of the face through single Action Units from the Facial Action Coding Scheme.
It is an Core Extension, that is, not every BML Compliant Realizer has to implement this behavior, but if a
Realizer offers FACS based face control, they should adhere to the specification of this <faceFacs> behavior

A BML Compliant Realizer that implements this extension will provide at least the set of Action Units
listed below. The other Action Units are not mandatory, but implementing the full set of Action Units is
strongly recommended.

Example: Raise both eye brows for 4 seconds.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
xmlns:ext="http://www.bml-initiative.org/bml/coreextensions-1.0"

character="Alice"
id="bml1">

<ext:faceFacs id="behavior1" au="1" side="BOTH" amount="0.8" start="0" end="4"/>
</bml>

Attributes

Attribute Type Use Default Description
au int require require The number of the FACS Action Unit to be displayed

side closedSetItem optional Which side of the face to display the action unit on.
Possible values: [LEFT,RIGHT,BOTH] Note that
for some Action Units, BOTH is the only possible
value.

21

<face>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <face>
Sync Points start, attackPeak, relax, end
Attributes id, au, side, amount, sync attributes (see above), overshoot (core extension)
Contents <lexeme>, with attributes lexeme and amount that can take the same values as for

the <faceLexeme> behavior. <facs>, with attributes au, side and amount that
can take the same values as for the <faceFacs> element. (This child element is only
available if FACS Core Extension is implemented; this <facs> child element has the
same namespace as the <faceFacs> behavior element)

Compound behavior to specify the timing and alignment of several (partial) face expressions as one unit.
Example: Raise both eye brows for 4 seconds.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
xmlns:ext="http://www.bml-initiative.org/bml/coreextensions-1.0"

character="Alice"
id="bml1">

<face id="behavior1" amount="0.8" start="0" end="4">
<ext:facs au="1" side="BOTH"/>
<lexeme lexeme="WIDEN_EYES"/>

</face>
</bml>

22

<faceShift>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <faceShift>
Sync Points start, end
Attributes id, amount, sync attributes (see above)
Contents <lexeme>, with attributes lexeme and amount that can take the same values as for

the <faceLexeme> behavior. <facs>, with attributes au, side and amount that
can take the same values as for the <faceFacs> element. (This child element is only
available if FACS Core Extension is implemented; this <facs> child element has the
same namespace as the <faceFacs> behavior element)

Compound behavior to specify the timing and alignment of several (partial) face expressions as one unit,
where the specified compound face expression becomes the new BASE state of the ECAs face.

Example: Raise both eye brows for 4 seconds.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
xmlns:ext="http://www.bml-initiative.org/bml/coreextensions-1.0"

character="Alice"
id="bml1">

<faceShift id="behavior1" amount="0.8" start="0" end="4">
<ext:facs au="1" side="BOTH"/>
<lexeme lexeme="WIDEN_EYES"/>

</faceShift>
</bml>

23

Gaze Behaviours

<gaze>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <gaze>
Sync Points start, ready, relax, end
Attributes id, target, influence, offsetAngle, offsetDirection, sync attributes (see

above)
Contents none

This behavior causes the character to temporarily direct its gaze to the requested target. The influence
parameter is read as follows: EYE means ’use only the eyes’; HEAD means ’use only head and eyes to
change the gaze direction’, etc.

Example: Direct the gaze towards the blue box for 9 seconds, using the eyes and the neck.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<gaze id="gaze1" start="1" end="10" influence="NECK" target="bluebox"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular

<bml> behavior. The id ’bml’ is reserved.
target targetID require A reference towards a target instance that repre-

sents the target direction of the gaze.
influence openSetItem optional Determines what parts of the body to move to ef-

fect the gaze direction. [EYES, HEAD, SHOUL-
DER, WAIST, WHOLE, ...]

offsetAngle angle optional 0.0 Adds an angle degrees offset to gaze direction rel-
ative to the target in the direction specified in the
offsetDirection

offsetDirection direction optional RIGHT Direction of the offsetDirection angle [RIGHT,
LEFT, UP, DOWN, UPRIGHT, UPLEFT,
DOWNLEFT, DOWNRIGHT]

Sync Attributes

Attribute Description
start gaze starts to move to new target
ready gaze target acquired
relax gaze starts returning to default direction
end gaze returned to default direction

24

<gazeShift>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <gazeShift>
Sync Points start, end
Attributes id, target, influence, offsetAngle, offsetDirection, sync attributes (see

above)
Contents none

This behavior causes the character to direct its gaze to the requested target. This changes the default state
of the ECA: after completing this behavior, the new target is the default gaze direction of the ECA. The
influence parameter is read as follows: EYE means ’use only the eyes’; HEAD means ’use only head and
eyes to change the gaze direction’, etcetera.

Example: Change the default gaze direction to be towards the blue box; the shift in gaze takes 1 second to
be ready.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<gazeShift id="gaze1" start="1" end="2" influence="NECK" target="bluebox"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular

<bml> behavior. The id ’bml’ is reserved.
target targetID require A reference towards a target instance that repre-

sents the target direction of the gaze.
influence openSetItem optional Determines what parts of the body to move to ef-

fect the gaze direction. [EYES, HEAD, SHOUL-
DER, WAIST, WHOLE, ...]

offsetAngle angle optional 0.0 Adds an angle degrees offset to gaze direction rel-
ative to the target in the direction specified in the
offsetDirection

offsetDirection direction optional RIGHT Direction of the offsetDirection angle [RIGHT,
LEFT, UP, DOWN, UPRIGHT, UPLEFT,
DOWNLEFT, DOWNRIGHT]

Sync Attributes

Attribute Description
start gaze starts to move to new target
end gaze target acquired

25

Gesture Behaviours

<gesture>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <gesture>
Sync Points start, ready, strokeStart, stroke, strokeEnd, relax, end
Attributes id, lexeme, mode, sync attributes (see above)
Contents none

Coordinated movement with arms and hands, recalled from a gesticon by requesting the corresponding
lexeme.

Example: Make a waving gesture.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<gesture id="behavior1" lexeme="hello-waving" start="2"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular

<bml> behavior. The id ’bml’ is reserved.
mode closedSetItem optional What hand/arm is being used [LEFT HAND,

RIGHT HAND, BOTH HANDS]
lexeme openSetItem require Refers to an animation or a controller to realize this

particular gesture.Every realizer will offer at least
this set of possible values: [BEAT]

The set of values for mode may in the future be extended with options such as HEAD or FOOT

Sync Attributes

Attribute Description
start beginning of gesture
ready end of gesture preparation phase

strokeStart start of the stroke
stroke gesture stroke

strokeEnd end of stroke
relax start of retraction phase
end end of gesture

26

<pointing>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <pointing>
Sync Points start, ready, strokeStart, stroke, strokeEnd, relax, end
Attributes id, target, mode, sync attributes (see above)
Contents none

Deictic gesture towards the target specified by the target attribute.
Example: Point at the blue box.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<pointing id="behavior1" target="blueBox" mode="RIGHT_HAND" start="0" end="4"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular

<bml> behavior. The id ’bml’ is reserved.
mode closedSetItem optional What hand/arm is being used [LEFT HAND,

RIGHT HAND, BOTH HANDS]
target targetID require The gesture is directed towards this target

Sync Attributes

Attribute Description
start beginning of gesture
ready end of gesture preparation phase

strokeStart start of the stroke
stroke gesture stroke

strokeEnd end of stroke
relax start of retraction phase
end end of gesture

27

Head Behaviours

<head>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <head>
Sync Points start, ready, strokeStart, stroke, strokeEnd, relax, end
Attributes id, lexeme, repetition, amount, sync attributes (see above)
Contents none

Movement of the head, recalled from a gesticon by requesting the corresponding lexeme. The stroke phase
of the head motion (from strokeStart till strokeEnd is the ”meaningful” part of the head motion. The
stroke sync point is the ”peak” moment of the motion. If repetition > 1, the meaning of the stroke
sync point becomes undefined.

Example: Nod twice.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<head id="behavior1" lexeme="NOD" repetition="2" start="1" end="3"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular

<bml> behavior. The id ’bml’ is reserved.
lexeme openSetItem require Refers to an animation or a controller to realize this

particular head behavior. Minimum set offered by all
realizers: [NOD, SHAKE]

repetition int optional 1 Number of times the basic head motion is repeated.
amount float optional 1 How intense is the head nod? 0 means immeasur-

able small; 0.5 means ”moderate”; 1 means maximally
large

The attribute speed has been discussed as possible extensions; however, they are not part of the Core 1.0
Standard.

Sync Attributes

Attribute Description
start start of the preparation phase
ready end of the preparation phase

strokeStart start of the stroke
stroke stroke of the head motion. Note that the meaning of this sync point becomes undefined if

repetition > 1
strokeEnd end of stroke

relax start of retraction phase
end end of the head motion

28

<headDirectionShift>

Orient the head towards a target referenced by the target attribute.

Syntax

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <headDirectionShift>
Sync Points start, end
Attributes id, target, sync attributes (see above)
Contents none

The attribute speed has been discussed as possible extensions; however, they are not part of the Core 1.0
Standard.

Example: Orient the head towards TARGET1.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<headDirectionShift id="behavior1" target="TARGET1" start="2"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular <bml>

behavior. The id ’bml’ is reserved.
target targetID require Target towards which the head is oriented

Sync Attributes

Attribute Description
start Beginning of motion
end Reached desired direction; set this direction as new BASE state

29

Locomotion Behaviour

<locomotion>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <locomotion>
Sync Points start, end
Attributes id, target, manner, sync attributes (see above)
Contents none

This behavior causes the character to move to the requested target in the manner described (move the body
of the character from one location to another.)

Example: Locomotion: walk to the audience.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<locomotion id="behavior1" target="AUDIENCE" manner="WALK"/>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular

<bml> behavior. The id ’bml’ is reserved.
target targetID require A reference towards a target instance that represents

the end location of the locomotive behavior.
manner openSetItem optional The general manner of locomotion [WALK, RUN,

STRAFE ...] (WALK is the only mandatory element
in the set)

Sync Attributes

Attribute Description
start Start of locomotion.
end End of locomotion.

30

Posture Behaviours

BML allows one to specify temporary postures using <posture>, and permanent shifts to a new BASE
posture using the <postureShift> behavior. Both behaviors have the same child elements to specify the
form of the posture.

<posture>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <posture>
Sync Points start, ready, relax, end
Attributes id, sync attributes (see above)
Contents <stance>, <pose>

Temporarily change the posture of the ECA. After the <posture> behavior has ended, return to the BASE
posture.

Example: Crouch down with open arms for a short while.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0" character="Alice" id="bml1">
<posture id="behavior1" start="5" end="15">

<stance type="CROUCHING"/>
<pose type="ARMS" lexeme="ARMS_OPEN"/>

</posture>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular <bml> be-

havior. The id ’bml’ is reserved.

Sync Attributes

Attribute Description
start Start moving to a new posture.
ready New posture achieved
relax start returning to BASE posture.
end Temporary posture ended, back at BASE posture

31

<postureShift>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <postureShift>
Sync Points start, end
Attributes id, sync attributes (see above)
Contents <stance> (1), <pose> (unlimited)

Permanently change the BASE posture of the ECA.
Example: Sit down with arms crossed, and make that the new BASE posture.

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
character="Alice"
id="bml1">

<postureShift id="behavior1" start="5">
<stance type="SITTING"/>
<pose type="ARMS" lexeme="ARMS_CROSSED"/>

</postureShift>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular <bml> be-

havior. The id ’bml’ is reserved.

Sync Attributes

Attribute Description
start Start moving to a new posture.
end new BASE posture achieved.

32

<stance>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <stance>
Attributes type
Contents none

Child element of <posture> and <postureShift> behaviors, defines additions that modify the global
body posture of the ECA. For each value of the part attribute, only one <pose> child is expected to be
present. A BML Realizer may define any number of lexemes beyond the ones specified above.

Attributes

Attribute Type Use Default Description
type closedSetItem require Global body posture. Possible values are [SITTING,

CROUCHING, STANDING, LYING].

33

<pose>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <pose>
Attributes part, lexeme
Contents none

Child element of <posture> and <postureShift> behaviors, defines additions that modify the global
body posture of the ECA. For each value of the part attribute, only one <pose> child is expected to be
present. A BML Realizer may define any number of lexemes beyond the ones specified above.

Attributes

Attribute Type Use Default Description
part openItemSet require What part of the body is affected? Possible val-

ues are [ARMS, LEFT ARM, RIGHT ARM, LEGS,
LEFT LEG, RIGHT LEG, HEAD, WHOLEBODY].

lexeme openItemSet require What configuration is set to the given part? Some pos-
sible values are [ARMS AKIMBO, ARMS CROSSED,
ARMS NEUTRAL, ARMS OPEN, LEGS CROSSED,
LEGS NEUTRAL, LEGS OPEN, LEAN-
ING FORWARD, LEANING BACKWARD, ...]

34

Speech Behaviours

<speech>

Namespace http://www.bml-initiative.org/bml/bml-1.0
Element <speech>
Sync Points start, end, any sync element in the speech (see below)
Attributes id, sync attributes (see above)
Contents exactly one <text> child containing the text to be spoken, which in turn may contain

one or more <sync> markers. A <sync> marker has an attribute id of type ID, the
value of which is unique within the context of this <speech> element.

Utterance to be spoken by a character. Realization of the ¡speech¿ element generates both speech audio (or
text) and speech movement, for example using a speech synthesizer and viseme morphing. The <speech>
element requires a sub-element. This sub-element is a <text> element that contains the text to be spoken,
with optionally embedded <sync> elements for alignment with other behaviors.

Example: This is an example of a complete speech behavior, synchronized to a beat gesture (striking on
”speech”).

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0" character="Alice" id="bml1">
<speech id="speech1" start="6">

<text>This is a complete
<sync id="syncstart1" /> BML core speech description.
</text>

</speech>
</bml>

Attributes

Attribute Type Use Default Description
id ID require Unique ID that allows referencing to a particular <bml> be-

havior. The id ’bml’ is reserved.

Sync Attributes

Attribute Description
start Start of speech.
end End of speech.

35

SSML Core Description Extension

The SSML description extension is of type ”application/ssml+xml”.
Its namespace is ”http://www.w3.org/2001/10/synthesis”.

The format of the content of this extension is defined at http://www.w3.org/TR/speech-synthesis/

Example: Using the SSML Description extension for speech

<speech id="s1">
<text>Hello! This is a basic SSML <sync id="bml"/>BML test.</text>
<description priority="2" type="application/ssml+xml">

<speak xmlns="http://www.w3.org/2001/10/synthesis">
Hello! <break time="3s"/> <prosody pitch="high">This is a basic SSML <mark name="bml"/>BML

test</prosody>.
</speak>

</description>
</speech>

MaryXML Core Description Extension

The MaryXML description extension is of type ”maryxml”.
Its namespace is ”http://mary.dfki.de/2002/MaryXML”.
It allows one to specify more detail for the TTS engine, if one uses [[http://mary.dfki.de MaryTTS]] for
speech generation.

The format of the content of this extension is defined at http://mary.dfki.de/documentation/maryxml

Example: Using the SSML Description extension for speech

<speech id="s1">
<text>Hello! This is a basic Mary <sync id="bml"/>BML test.</text>
<description priority="2" type="maryxml">

<maryxml xmlns="http://mary.dfki.de/2002/MaryXML">
Hello! This is a basic Mary <mark name="bml"/>BML test.
</maryxml>

</description>
</speech>

36

Description Extensions and Other Extension Mechanisms

The core BML behavior elements are by no means comprehensive, and much of the ongoing work behind
BML involves identifying and defining a broad and flexible library of behavior (types). Implementors are
encouraged to explore new behavior elements and more detailed ways to specify existing core behaviors.
BML allows such extensions in several ways:

• Additional behaviors should be designed as new XML elements using custom XML namespaces.

• Specialized attributes can be used to extend core BML behaviors. Such attributes should be identified
as non-standard BML by utilizing XML namespaces.

• Behavior Description Extensions provide a principled way of specifying core BML behaviors in a more
detailed manner, typically using existing XML languages for that specific behavior.

Figure 5: Extending BML

The following example utilizes a customized animation behavior and a customized joint-speeds
attribute. The latter specifies the core gaze behavior in a more detailed manner. Both extensions are from
the SmartBody project.

Example: Using extensions

<bml xmlns="http://www.bml-initiative.org/bml/bml-1.0"
xmlns:sbm="http://www.smartbody-anim.org/sbm">
<gaze id="gaze1" target="AUDIENCE" sbm:joint-speeds="100 100 100 300 600"/>
<sbm:animation name="CrossedArms_RArm_beat"/>

</bml>

If a realizer cannot interpret extended BML, it should deal with it in the way suggested in the Section Failure
and Fallback.

Behavior Description Extensions

BML allows for additional behavior descriptions that go beyond the core BML behavior specification in de-
scribing the form of a behavior. Additional descriptions are embedded within a behavior element as children
elements of the type description. The type attribute of the description element should identify the type of
content, indicating how it should be interpreted. Even if additional descriptions are included in a behavior,
the core attributes of the behavior element itself cannot be omitted since the core specification is always the

37

default fall-back.

Description elements in BML can include existing representation languages such as SSML, Tobi, etc. or
new languages can be created that make use of advanced realization capabilities. Each description element
should be a self-contained description of a behavior because a behavior realizer may not know how to combine
multiple behavior descriptions. It is required that each description provides exactly the same synchroniza-
tion points as its accompanying core BML. It is however allowed to place the synchronization points in the
description extension at slightly different positions than those in the core BML. This can be used to, for
example, to provide synchronization at syllable level rather than a word level in a description extension of
a speech behavior.

If a realizer does not known how to interpret the available description types, it should default to the core
behavior.

If multiple description elements are given, and a realizer is capable of interpreting more than one, the
realizer should use the highest priority description.

Example: use an audio file to play back this speech behavior. If that’s not supported, use SSML. As a
last resort, fall back to the core behavior. Note that the descriptions specify the same sync points as the
core behavior.

Examples

<speech id="s1">
<text>This is the proposed BML <sync id="tm1"/> extended speech specification.</text>
<description priority="1" type="application/ssml+xml">

<ssml:speak xmlns:ssml="http://www.w3.org/2001/10/synthesis">
This is the <ssml:emphasis>proposed</ssml:emphasis> BML <ssml:mark name="tm1"/> extended

speech specification.
</ssml:speak>

</description>
<description priority="3" type="audio/x-wav">

<audio:sound xmlns:audio="http://www.ouraudiodesc.com/">
<audio:file ref="bml.wav"/>
<audio:sync id="tm1" time="2.3" />

</audio:sound>
</description>

</speech>

Example: Using description extensions for speech

<speech id="s1">
<text>This is the proposed BML <sync id="tm1"/> extended speech specification.</text>
<description priority="1" type="application/ssml+xml">

<speak xmlns="http://www.w3.org/2001/10/synthesis">
This is the <emphasis>proposed</emphasis> BML <mark name="tm1"/> extended speech

specification.
</speak>

</description>
<description priority="3" type="audio/x-wav">

<sound xmlns="http://www.ouraudiodesc.com/">
<file ref="bml.wav"/>
<sync id="tm1" time="2.3" />

</sound>
</description>

</speech>

Example: A slightly less verbose example of the same behavior, using default namespaces for audio and
SSML.

38

Failure and Fallback

When a realizer is unable to interpret or execute part of a <bml> block, it should deal with it in the following
ways.

• if unable to execute <required> block: drop complete <bml> block; send warning feedback

• if unable to execute a behavior child: drop behavior, send warning feedback

• if unable to adhere to a constraint specified in an attribute in a behavior child: drop behavior, send
warning feedback

• if unable to interpret a description extension: fallback to lower priority description extension, or to
core behavior

• if unable to interpret extended behaviors: drop behavior, send warning feedback

• if unable to interpret extended attributes: drop attribute, send warning feedback

39

Feedback

A BML realizer should provide a behavior planner with various types of feedback. Progress feedback gives
information on the execution status of ongoing behaviors. Prediction feedback provides the ”scheduling
solution” of behaviors, such as the expected timing of sync points. Warning feedback indicates that the
execution or scheduling of some behavior(s) failed, or that some time constraints could not be achieved.

Prediction Feedback

Name Prediction Feedback
Status Optional
XML Namespace http://www.bml-initiative.org/bml/bml-1.0

Prediction feedback provides information about the expected realization of the <bml> request. It consists of
block prediction, and behavior prediction feedback. Block prediction feedback contains information on the
global start and end time of a block. Behavior prediction feedback contains information on the local timing
of all sync points of the behavior.

Prediction feedback may be revised – later feedback counts as a ’revision’ overriding all previous predic-
tion feedback concerning the same <bml> block or the same behavior element.

Syntax

The syntax is similar to that of the BML blocks. The prediction feedback is wrapped into a <predictionFeedback>
element, which has an optional characterId attribute indicating the ID of the character.

Example: Block prediction example

<predictionFeedback characterId="doctor" (optional attribute)>
<bml id="bml1" globalStart="1" globalEnd="30"/>

</predictionFeedback>

Example: Behavior prediction example

<predictionFeedback>
<gesture id="bml1:gesture1" lexeme="BEAT" start="0" ready="1" strokeStart="3" stroke="4"

strokeEnd="5" relax="6" end="7"/>
</predictionFeedback>

Example: Solution for speech, internal syncs are resolved by a time attribute in the sync tag.

<predictionFeedback>
<speech start="0" ready="0" strokeStart="0" stroke="4" strokeEnd="4" relax="4" end="4"

id="bml1:speech1">
<text>Hello <sync id="s1" time="2"/> world</text>

</speech>
</predictionFeedback>

Example: Solution for a behavior with a custom sync point. The prediction for the timing of the custom sync
point is provided in an embedded the sync tag.

<predictionFeedback>
<gesture id="bml1:gesture1" type="LEXICALIZED" lexeme="CUSTOM_LEXEME" start="0" ready="0"

strokeStart="0" stroke="4" strokeEnd="4" relax="4" end="4">
<sync id="customsync1" time="3"/>

</gesture>
</predictionFeedback>

Example: A prediction feedback may contain multiple behaviors or blocks.

40

<predictionFeedback>
<bml id="bml1" globalStart="1" globalEnd="7"/>
<gesture id="bml1:gesture1" lexeme="BEAT" start="0" ready="1" strokeStart="3" stroke="4"

strokeEnd="5" relax="6" end="7"/>
<head id="bml1:head1" lexeme="NOD" start="0" ready="1" strokeStart="3" stroke="4" strokeEnd="5"

relax="6" end="7"/>
</predictionFeedback>

Shape Feedback

The behaviors elements within a prediction feedback may be used to provide the behavior planner with
information on the shape of a to be executed behavior. For example, the BML block:

<bml id="bml1">
<gesture id="b1" lexeme="BEAT"/>

</bml>

may result in feedback of the form:

<predictionFeedback>
<gesture id="b1" lexeme="BEAT" mode="RIGHT_HAND"

start="0" ready="1"
strokeStart="1" strokeEnd="2"
relax="2" end="3"/>

</predictionFeedback>

In addition to informing the behavior planner on the timing of gesture b1, this feedback message also informs
the behavior planner that the realizer chose to execute the beat gesture with the right hand. When desired,
description extensions can be employed to provide very detailed shape information.

Multiple Revisions

Prediction feedback may be revised – later feedback counts as a ’revision’ overriding all previous prediction
feedback concerning the same <bml> block or the same behavior element. As such, the feedback can be
used as (potentially continually updated) predictions of the timing of behaviors.

Maximum Information

The BML Realizer must send information about all sync points that it does know about. If it does not know,
it will leave out the sync point from the returned BML expression.

41

Progress Feedback

Provides real-time information on the progress of ongoing behavior. Consists of progress feedback on the
<bml> block and individual sync point level.

Name Progress Feedback
Status Mandatory
XML Namespace http://www.bml-initiative.org/bml/bml-1.0

<blockProgress>

Block start block start contains the following attributes:

Attribute Type Use Default Description
id ID required Unique ID that allows referencing to a particular <bml>

behavior. The id ’bml’ is reserved.
globalTime float required Global time stamp
characterId ID optional ID of the character to which the feedback belongs

Example: block start feedback

<blockProgress id="bml1:start" globalTime="10" characterId="doctor"/>

Example: block end feedback

<blockProgress id="bml1:end" globalTime="15" characterId="doctor"/>

BML compliant realizers should provide progress feedback for at least the start and end of the BML block
(the format for this is shown in the examples above). Optionally, realizers might provide feedback on other
time events of a BML block. For example: a realizer might indicate that it is subsiding (all behavior in the
block is either ended or in a relax phase) in the following manner:

<blockProgress id="bml1:relax" globalTime="14" characterId="doctor"/>

42

<syncPointProgress>

Sync point progress feedback contains the following attributes:

Attribute Type Use Default Description
id ID required full ID of the sync point to which the feedback belongs

globalTime float required Global time stamp of when the sync point happened
time float required Local time stamp of when the sync point happened, relative

to the block start of the corresponding ¡bml¿ block
characterId ID optional ID of the character to which the feedback belongs

Example: sync point progress feedback

<blockProgress id="bml1:end" globalTime="15" characterId="doctor"/>

43

The Order of Progress Feedback

Some order constraints are enforced upon the sending of progress feedback:

• The block start feedback of a <bml> block should occur before all sync point progress feedback messages
of all behaviors in the block.

• The block end feedback of a <bml> block should occur after all sync point progress feedback messages
of all behaviors in the block.

• The sync point progress feedback of behaviors should arrive in the default order. For example, if a
start and ready sync of a behavior occur at the same time, the sync point progress feedback of the
start sync should still be sent before that of the ready sync.

44

Warning Feedback

Warning feedback notifies the behavior planner that requested behaviors and/or constraints have failed to
realize, and possibly led to aborting the performance.

It contains the following information:

• BML ID

• warning type [BML parsing failure, no such gaze/walk/point target, impossible to schedule, realizer
does not support behavior type x, realizer cannot construct behavior type x, ...]

• Whether the block was interrupted as a whole or the id of the behavior that failed

• Optional : a human-readable description of the error

• Optional : character id

<warningFeedback id="bml1" characterId="armandia" type="PARSING_FAILURE">
Cannot parse BML block
</warningFeedback>

bml1 fails as a whole

<warningFeedback id="bml1:gaze1" characterId="armandia" type="NO_SUCH_TARGET">
"doctor" is not a valid gaze target.
</warningFeedback>

behavior gaze1 in bml1 fails
The content of the <warningFeedback> element is left open. In the examples we show how human

readable error messages could be embedded in warning feedback. Alternatively, realizers could embed a
custom XML element that describes the warning in more detail.

The following feedback types are included in BML 1.0:

PARSING FAILURE There is an error in the syntax of the <bml> block
NO SUCH TARGET locomotion/gaze/.. target does not exist in the world
IMPOSSIBLE TO SCHEDULE The BML block contains conflicting constraints(e.g.

beh1:start=beh1:end+1)
BEHAVIOR TYPE NOT SUPPORTED The realizer does not support a core behavior type requested

in the BML block (e.g. when a realizer steer a head only avatar
is asked to do a locomotion behavior)

CUSTOM BEHAVIOR NOT SUPPORTED The realizer does not support a custom (non core) behavior
CUSTOM ATTRIBUTE NOT SUPPORTED The realizer does not support a custom attribute specified on

a core behavior
CANNOT CREATE BEHAVIOR The realizer cannot construct a behavior (given specified time

constraints and shape attributes)

45

Contributors

Over the years, a large number of people have contributed to the papers, workshops and developer meetings
leading to this standard. Below, you find an (incomplete) list of names.

Aleksandra Cerekovic, Alex Hill, Alexis Heloir, Andrew Marshall, Ari Shapiro, Brigitte Krenn, Catherine
Pelachaud, Dan Loehr, Dennis Reidsma, Hannes Högni Vilhjálmsson, Hannes Pirker, Herwin van Welber-
gen, James Gruber, Job Zwiers, John Borland, Jon Homer, Justine Cassell, Kristinn R. Thórisson, Marco
Vala, Maurizio Mancini, Michael Kipp, Michael Krieger, Michael Neff, Michael Wißner, N. Cantelmo, N.E.
Chafai, Nicolas Schulz, Paul Tepper, Prasan Samtani, Quoc Anh Le, Radek Niewiadomski, Rick van der
Werf, Stacy Marsella, Stefan Kopp, Tim Bickmore, W. Lewis Johnson, Zsofia Ruttkay

46

	Introduction
	Lean Core
	Core Extensions

	Global Context
	SAIBA
	BML Messaging Architecture
	The BML Realizer
	The State of an ECA

	XML Format
	Attribute Value Types
	Coordinate System

	BML Request
	<bml>
	<required>

	Behaviours
	Common Aspects
	Synchronization
	<constraint>
	<synchronize>
	<before>
	<after>
	semantics

	Face
	<faceLexeme>
	<faceFacs>
	<face>
	<faceShift>

	Gaze
	<gaze>
	<gazeShift>

	Gesture
	<gesture>
	<pointing>

	Head
	<head>
	<headDirectionShift>

	Locomotion
	<locomotion>

	Posture
	<posture>
	<postureShift>
	<stance>
	<pose>

	Speech
	<speech>
	SSML Core Description Extension
	MaryXML Core Description Extension

	Failure and Fallback
	Feedback
	Prediction Feedback
	Progress Feedback
	Warning Feedback

	Contributors

