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Abstract

There are not yet autonomous flying robots capable of manoeuvring in
small cluttered environments as insects do. Encouraged by this obser-
vation, this thesis presents the development of ultra-light flying robots
and control systems going one step toward fully autonomous indoor
aerial navigation. The substantial weight and energy constraints im-
posed by this indoor flying robots preclude the use of powerful proces-
sors and active distance sensors. Moreover, flying systems require fast
sensory-motor mapping despite their limited processing power.

In order to cope with those apparently contradictory constraints,
our approach takes inspiration from flying insects, which display effi-
cient flight control capability in complex environments in spite of their
limited weight and relatively tiny brain. In particular, they are able to
stabilise their course, avoid obstacles and control their altitude, which
represents the basic mechanisms we want to have on an indoor flying
robot.

To achieve efficient flight control, insects rely essentially on two
sensory modalities: vision and gyroscope. They possess two low-
resolution, compound eyes which are particularly sensitive to image
motion (optic flow). In their visual system, some neurons are known to
be responsible for detecting self-motion and impending collisions based
on optic-flow. Gyroscopic information coming from two mechanosen-
sors located behind the wings complements visual cues in tasks such
as gaze and course stabilisation.

In this thesis, we explore the application of such biological principles
to develop navigation controllers for indoor flying robots. In particular,
we address the problem of how low-resolution vision and gyroscopic
information can be mapped into actuator commands in real-time to
maintain altitude, stabilise the course and avoid obstacles. As an alter-
native to hand-crafting control systems based on biological principles,
in a second phase, we take inspiration from the evolutionary process
that eventually generated those animals and apply artificial evolution
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to search for alternative control systems and behaviours that can fit
the constraints of indoor flying robots.

Instead of replicating the biomechanics of insect flight, our targeted
robotic platform is a fixed-wing airplane capable of flying indoors at
very low speed (<1.5m/s). This testbed weights only 30-grams and
is equipped with several miniature cameras and a small gyroscope.
In order to progress gradually in the task of automating indoor flying
robots, two other platforms have been developed, namely a miniature
wheeled robot and a small indoor airship. All three robotic platforms
feature very similar sensors and electronics in order to facilitate the
transfer of software modules and control strategies.

Applying the proposed bio-inspired approach, we succeeded in au-
tomating the steering (course stabilisation and obstacle avoidance) of
the 30-gram airplane in a square textured arena. Then, using artificial
evolution with the airship, we obtained alternative navigation strategies
based on the same sensory modalities.



Version abrégée

Il n’existe pas encore de petit robot autonome capable de voler, à l’instar
des insectes, dans des environnements intérieurs encombrés. Cette
observation a motivé notre thèse qui se propose de développer des ro-
bots volants ultralégers ainsi que leur système de contrôle. Les con-
traintes énergétiques et les limitations de poids de ces engins volants
sont telles que l’utilisation de processeurs puissants et de capteurs de
distance actifs est impossible. De plus et en dépit de leur puissance de
calcul limitée, les systèmes volants requièrent un traitement rapide de
l’information sensorielle pour contrôler leurs actuateurs.

Pour faire face à ces contraintes apparemment contradictoires,
notre approche s’inspire directement de la biologie des insectes volants
qui sont capables de contrôler leur vol efficacement malgré leur faible
poids et leur cerveau microscopique. En particulier, ils sont à même
de stabiliser leur trajectoire, d’éviter les obstacles et de contrôler leur
altitude. Or, ces mécanismes représentent la base de ce qu’un robot
volant devrait être capable de faire.

Pour obtenir un contrôle efficace de leur vol, les insectes font princi-
palement appel à deux modalités sensorielles : la vision et des senseurs
gyroscopiques. Ils possèdent deux yeux qui, malgré une résolution très
limitée, sont particulièrement sensibles aux mouvements d’image (flux
optique). Certains neurones du système visuel sont spécialisés dans
la détection du mouvement propre de l’insecte et des collisions im-
minentes. L’information gyroscopique provenant des petits capteurs
mécaniques situés derrière les ailes complète le signal visuel pour sta-
biliser le regard et la trajectoire de l’insecte.

Dans une première phase, nous explorons l’application de tels
principes biologiques dans le développement de systèmes de contrôle
pour des robots volants d’intérieur. En particulier, nous nous intéres-
sons à la façon de traduire, en temps réel, les informations visuelles
(faible résolution) et gyroscopiques en commandes de moteurs pour
maintenir l’altitude, stabiliser la trajectoire et éviter les obstacles. Dans
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une seconde phase, au lieu de développer “à la main” les systèmes de
contrôle nous nous inspirons du processus évolutionniste qui a généré
ces insectes. Un processus d’évolution artificielle est alors utilisé pour
générer des systèmes de contrôle efficaces ainsi que des comporte-
ments satisfaisant aux contraintes des robots volants d’intérieur.

Plutôt que de répliquer la mécanique de vol complexe des insectes,
nous avons choisi de construire des systèmes volants plus simples. La
première plateforme robotique utilisée est un avion à ailes fixes capable
de voler à très basse vitesse (<1.5m/s). Ce robot équipé de plusieurs
caméras miniatures et d’un gyroscope ne pèse que 30 grammes. Dans
le but de progresser graduellement vers l’automatisation des robots
volants d’intérieur, deux autres plates-formes ont été développées :
un robot à roues miniature et un petit dirigeable d’intérieur. Tous
les trois systèmes sont équipés de façon similaire en ce qui concerne
l’électronique et les capteurs, ceci afin de faciliter le transfert des mod-
ules informatiques et des stratégies de contrôle.

En appliquant l’approche bio-inspirée proposée, nous avons tout
d’abord réussi à automatiser le pilotage (stabilisation de trajectoire et
évitement d’obstacle) de l’avion de 30 grammes dans une arène carrée
contenant des textures sur les murs. Ensuite, en utilisant l’évolution
artificielle avec le dirigeable, nous avons obtenu d’autres stratégies de
navigation basées sur les mêmes modalités sensorielles.
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Chapter 1

Introduction

As natural selection is inherently opportunistic, the neu-
robiologist must adopt the attitude of the engineer, who is
concerned not so much with analyzing the world than with
designing a system that fulfils a particular purpose.

R. Wehner (1987)

1.1 Overview

1.1.1 The Problem at Hand

There are not yet autonomous flying robots capable of manoeuvring in
small cluttered environments as insects do. Driven by this observa-
tion, this thesis presents the development of ultra-light flying robots
and control systems going one step toward fully autonomous indoor
aerial navigation. The substantial weight and energy constraints im-
posed by indoor flying robots preclude the use of powerful processors
and active distance sensors such as sonar or laser range finders (Sieg-
wart and Nourbakhsh, 2004). Moreover, flying systems tend to move
faster than terrestrial vehicles of the same size. They thus require fast
sensory-motor mapping despite their limited processing power. In order
to cope with those apparently contradictory constraints, our approach
takes inspiration from flying insects, which display efficient flight con-
trol capability in complex environments in spite of their limited weight
and relatively tiny brain.

Biological inspiration takes place at different levels. The choice
of sensory modalities (low-resolution vision and gyroscopic sensors) is
based on the anatomy of flies. At the control level, two different ap-
proaches are explored. The first approach consists in mimicking flying
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insects in their way of processing information and behaving using optic
flow1. The second approach relies on artificial evolution to automat-
ically develop neuromorphic controllers that map sensory signals into
motor commands to produce adapted behaviours.

When tackling the realisation of bio-inspired flying robots, not only
the physical platforms need to be developed, but the type of behav-
iours they should display must be decided as well as the environment
in which they will be tested. Since in the most general terms the re-
search domain is enormous and the technological challenges of build-
ing autonomous indoor flying systems are significant, the scope of this
research has deliberately been restricted as follows.

We do no attempt to reproduce the bio-mechanical principles of in-
sect flight, which is in itself a considerable domain of research (Dick-
inson et al., 1999; Dudley, 2000; Lehmann, 2004). Instead, more clas-
sical flight principles are adapted to the constraints of flying indoor.
The first step of this project thus consists of building flying platforms
able to manoeuvre within limited space, while still having enough lift
capability to support the required sensors and electronics. Two flying
platforms, a 120cm-long indoor airship (also called blimp) and a 30-
gram airplane, have been developed to serve as experimental testbeds
and demonstrators. An additional wheeled robot featuring similar elec-
tronics is also used to first assess new control ideas before transferring
them to aerial robots.

At the behavioural level, instead of tackling an endless list of high-
level tasks like goal-directed navigation, homing, food seeking, landing,
etc., which themselves constitute open research topics even on terres-
trial robots, a set of requirements for basic navigation is identified and
studied. The behaviour which is at the core of the dissertation can
be summarised as "maximising forward translation". This simple be-
haviour requires a series of more basic mechanisms such as attitude
control (ATC), course stabilisation (CS), obstacle avoidance (OA), and
altitude control (ALC).

With regard to the choice of experimental environments, simple geo-
metries and textures have been chosen in order to allow easy charac-
terisation and manipulation of environmental features. Experimental
environments are square rooms with randomly distributed black and
white gratings painted on walls. The size of the arenas is adapted to
each robot dynamics, e.g., the arena used for experiments with the air-

1The optic flow is the image motion as projected onto the retina of a visual system.
See chapter 4 for details.
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plane flying at about 1.5m/s is three times larger (15 by 15m) than the
arena for the blimp (5 by 5m), which has a nominal velocity around
50cm/s.

1.1.2 Original Contribution

This thesis sits at the intersection of several scientific disciplines such
as biology, aerodynamics, micro-engineering, micro-electronics, com-
puter vision, and robotics. One of the main challenges of this work
relies in the integration of the knowledge from all these different fields
into functional systems able to fly indoor and the proposal of control
strategies suitable for such autonomous aircrafts. More specifically,
this thesis contributes with:

• the development of indoor flying aircrafts, in particular a 30-gram
robotic airplane fitted with two 1D cameras and a small gyroscope
(chapter 3),

• the implementation of an optic-flow processing algorithm (chapter
4) as well as an artificial neural network (appendix B) for vision-
based navigation in the embedded 8-bit microcontroller,

• a control strategy for vision-based steering and obstacle avoidance
of the 30-gram robotic airplane (chapter 5),

• the application of evolutionary algorithms to the control of a phys-
ical vision-based flying robot (chapter 6).

1.1.3 Motivation and Background

Indoor Flying Robots

In the field of mobile robotics, a lot of research has been carried out
on wheeled robots moving on flat surfaces. More recently, the types
of platforms have expanded to rough-terrain vehicles, humanoid and
walking robots. Although some noticeable exceptions exist (see, among
others, the ones cited in the next section), aerial systems are under-
represented in the list of platforms commonly used in autonomous ro-
botics. This is mainly due to the three following reasons. First, aerial
systems are usually costly and require expert backup pilots to secure
every experiment. Second, they require a wide clear space that is not
always available in the vicinity of the research centers. Moreover, there
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are legal restrictions to unmanned aerial vehicles (UAVs) in most parts
of the airspace. Third, the military domain represents the main field of
applications of UAVs today, and although some civilian opportunities
exist in traffic surveillance, search and rescue, visual reconnaissance,
weather monitoring, or communication relay, there is not yet a clear
commercial interest for truly autonomous aerial robots.

Recently, flying in small indoor environments became possible
thanks to technological advances in battery (increase in power to
weight ratio) and miniaturisation of electrical motors (Nicoud and Zuf-
ferey, 2002; Bouabdallah et al., 2005). This new possibility of flying in-
door opens new horizons to roboticists because it dramatically reduces
costs and security issues, while releasing researchers from requesting
special authorisations from air-law instances. The typical character-
istics of flying platforms such as their ability to manoeuvre in three
dimensions, the absence of mechanical contact with a reference frame,
their complex dynamics and rapid motion represent as many interest-
ing research topics for roboticists. Simultaneously, flying indoor im-
poses strong constraints toward efficient system integration, minimal
weight and low energy consumption. In addition to underwater, space,
and aerial robotics (see chapter 7 for further discussion), advances in
such issues can contribute to other domains where low-cost, small-
size, low-energy vision could be useful for real-time collision detection
or other purposes.

Inspiration from Biology

One of the fundamental challenges facing the field of robotics is the
design of robust controllers that map sensory input to action. The
problem is even more severe when it comes to robots that are small,
lightweight and relatively fast, which is the case of indoor flying sys-
tems. Engineers have been able to master amazing technologies for
flying at very high speed or travelling into space. However, biologi-
cal information processing systems far outperform today’s computers
at tasks involving real-time perception in uncontrolled environments,
in particular if we take energy efficiency into account. Based on this
observation, this thesis aims at understanding what kind of biological
principles might be amenable to artificial implementation in order to
synthesise systems that typically require energy efficiency, low-power
processing and feature complex dynamics.

In this dissertation, the notion of “biological principle” is taken
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in a broad meaning, ranging from individual biological features like
anatomy of perceptive organs, models of information processing or be-
haviours, to the evolutionary process at the level of the species. The
idea of applying such biological principles to autonomous robots is
drawn from the fields of biorobotics2 (Chang and Gaudiano, 2000;
Webb and Consi, 2001) and evolutionary robotics (Nolfi and Floreano,
2000), which is in some sense a sub-domain of biorobotics. These
trends have themselves largely been inspired by the new artificial in-
telligence (new AI) first advocated by Brooks in the early 80s (for a
review, see Brooks, 1999) and by the seminal ideas by Braitenberg
(1984). When taking inspiration from biological principles, care must
be taken to avoid the pitfall of doing biomimicry for itself while forget-
ting the primary goal of constructing functional autonomous robots.
For instance, it would not make sense to replace efficient engineered
systems or subsystems by poorly performing bio-inspired systems for
the only reason that they are bio-inspired.

One of the main goals of this thesis is to select and apply biological
principles to the design of autonomously flying robots because such
principles proved to be successful at solving the same kind of problems
in biological systems. Although our primary goal is not to assess the bi-
ological principles, the fact that they permit efficient results in artificial
systems might contributes to the field of biology in the sense that the
implemented model is at least a functional explanation of the underly-
ing biological principle. The increasing number of biologists willing to
construct mobile robots in order to test their models in artificial sys-
tems is indeed remarkable (see, for instance, Srinivasan et al., 1997;
Duchon et al., 1998; Lambrinos et al., 2000; Rind, 2002; Reiser and
Dickinson, 2003; Franceschini, 2004; Webb et al., 2004). As a result,
biorobotics can be seen as a link between the worlds of biology and en-
gineering, in which biorobots (or bio-inspired robots) are used as tools
for biologists studying animal behaviour and as testbeds for the study
and evaluation of biological algorithms for potential applications to en-
gineering. Furthermore biorobotics can also help biologists to identify
and investigate worthwhile issues related to sensory-motor control that
could, in turn, provide new solutions to roboticists.

2Also called bio-inspired robotics or biomimetic robotics.
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Vision as Main Sensory Modality

The weight and energy constraints of indoor flying systems drastically
restrict the choice of sensors that can be embedded. Recent devel-
opments in MEMS3 technology allow to measure strength, pressure,
magnetic or inertial forces with ultra-light devices weighing only a few
milligrams. For what concerns distance perception, the only passive
sensory modality that can provide useful information is vision. Active
range finders such as laser, infrared or sonar have significant draw-
backs such as their inherent weight (they require an emitter and a
receiver), their need to send energy into the environment, and their
inability to “see” a wide portion of the surroundings unless they are
mounted on a scanning system. On the other hand, visual sensors can
be made really tiny, do not need to send signals into the environment,
and have a larger field of view.

The same considerations have probably driven evolution of flying
insects toward the same choice of using vision instead of active range
finders to control their flight, avoid obstacles and navigate in complex
environments. The main problem of vision is the non-trivial relation-
ship between the raw signal coming from the sensor and the corre-
sponding 3D layout of the surroundings. The mainstream approach to
computer vision based on a sequence of pre-processing, segmentation,
object extraction, and pattern recognition of each single image is prob-
ably not tractable for the embedded processor of an ultra-light flying
robot that must respond very quickly in its environments. By taking in-
spiration from flying insects, this thesis aims at discovering how to map
simple visual patterns directly to actuator commands. This is possible
because vision is taken as part of a complete agent that must accom-
plish a task in a given environment (Pfeifer and Lambrinos, 2000). This
idea is very close to the ecological approach to visual perception, first
developed by Gibson (1950, 1979) and further advocated by Duchon
et al. (1998):

Ecological psychology [...] views animals and their environ-
ments as “inseparable pairs” that should be described at a
scale relevant to the animal’s behavior. So, for example, an-
imals perceive the layout of surfaces (not the coordinates
of points in space) and what the layout affords for action
(not merely its three-dimensional structure). A main tenet of

3Micro-Electro-Mechanical Systems
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the ecological approach is that the optic array, the pattern
of light reflected from these surfaces, provides adequate in-
formation for controlling behavior without further inferential
processing or model construction. This view is called direct
perception: The animal has direct knowledge of, and relation-
ship to, its environment as a result of natural laws.

Following this philosophy, no attempt shall be made to explicitly es-
timate distances separating the artificial eye of our flying robots and
the environment. Rather, simple biological models are used to link im-
age motion to actions such as obstacle avoidance or altitude control,
without going through complex sequences of image processing.

1.2 Related Work

In this section, we first review ultra-light flying systems that are not
(yet) autonomous. Then, bio-inspired vision-based robots of different
kinds are presented.

1.2.1 Ultra-light Flying Devices

This subsection is a review of recent efforts in building micro-
mechanical devices that can fly in restricted environments. Lighter-
than-air (blimp) platforms (e.g., Zhang and Ostrowski, 1998; Planta
et al., 2002; van der Zwaan et al., 2002; Melhuish and Welsby, 2002;
da Silva Metelo and Garcia Campos, 2003; Iida, 2003) are not described
because their realisation is not technically challenging. Micro air ve-
hicles (MAVs; see for example Mueller, 2001; Grasmeyer and Keen-
non, 2001; Ettinger et al., 2003) are not tackled either because they
are not intended for slow flight in restricted areas.MAVs (as defined by
DARPA4) fly at around 15m/s, whereas indoor aircrafts should be able
to fly below 2m/s in order to steer in typical indoor environments such
as offices or houses. Finally, only very small rotorcrafts are described
because this type of machines become very risky to fly indoors as soon
as their weight increase.

A team at Caltech in collaboration with AerovironmentTM developed
the first remote-controlled, battery-powered, flapping-wing micro air-
craft (Pornsin-Sirirak et al., 2001). This 20cm-wingspan, 12-gram de-
vice (figure 1.1a) has an autonomy of 6 minutes when powered with a

4The American Defense Advanced Research Projects Agency.
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Figure 1.1: (a) Caltech and Aerovironment’s 12-gram MicroBat. Reprinted
from http://touch.caltech.edu/research/bat/bat.html. (b) The 14-gram bi-
plane flapping thruster. Reprinted from Jones et al. (2004). (c) A teth-
ered version of the Mesicopter with 15mm propellers. Reprinted from
http://aero.stanford.edu/mesicopter/.

lithium-polymer battery. More recently, Jones et al. (2004) engineered
a small radio-controlled device propelled by a biplane configuration of
flapping wings that move up and down in counter-phase (figure 1.1b).
The 14-gram model has demonstrated stable flight at speeds between
2 and 5m/s. Another team at Stanford University (Kroo and Kunz,
2001) proposed a centimeter scale rotorcraft (figure 1.1c), based on
four miniature motors with 15mm propellers. However, experiments
on lift and stability were done on larger models. Although those flying
devices constitute remarkable micro-mechatronic developments, none
of them is capable of autonomous navigation, nor has on-board sensors
of any type.

In an even smaller size, Ron Fearings’ team is attempting to cre-
ate a micro flying robot (figure 1.2) that replicates wing mechanics and
dynamics of flies (Fearing et al., 2000). The planned weight of the fi-
nal device is approximately 100mg for a 25mm wingspan. Piezoelec-
tric actuators are used for flapping and rotating the wings at about



1.2. Related Work 9

Figure 1.2: Artist’s conception of future micromechanical flying insect (MFI).
Reprinted from http://robotics.eecs.berkeley.edu/~ronf/mfi.html.

150Hz. Electrical power should be supplied from lithium-polymer bat-
teries charged by three miniature solar panels. So far, a single wing on
a test rig has generated about 0.5mN average lift while linked to an off-
board power supply (Avadhanula et al., 2003). The team is currently
working on a bio-mimetic sensor suite for attitude control (Wu et al.,
2003), but no test in flight has been reported so far.

1.2.2 Biomimetic Vision-based Robots

In the early 90s, research on biomimetic vision-based navigation was
mainly carried out on wheeled robots. Although, several functions such
as searching, aiming, topological navigation were studied (Franz and
Mallot, 2000), this review focuses on the basic behaviour of obstacle
avoidance that is related to the contribution of this thesis. More recent
work is also reported, which tackles vision-based aerial guidance from
a biomimetic perspective. A common aspect of these robots is that they
use optic flow as main sensory input for controlling their motion.

Wheeled Robots

Several models of visual guidance of flying insects have been tested
on terrestrial robots. Nicolas Franceschini and his team at CNRS in
Marseilles (for a review, see Franceschini, 2004) have spent several
years studying the morphological and neurological aspects of the visual
system of the fly and its way of detecting optic-flow (see chapter 2). In
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order to test their hypothesis on how the fly could use optic-flow, they
built an analog electronic circuit modeled upon the neural circuitry of
the fly brain and interfaced it with a circular array of photoreceptors on
a 12-kg wheeled robot (figure 1.3a). The so-called “robot mouche” was
capable of approaching a goal while avoiding obstacles (characterised
by higher contrast with respect to a background) on its way (Pichon
et al., 1990; Franceschini et al., 1992).

Although some preliminary results in vision-based obstacle avoid-
ance were obtained with a gantry robot by Nelson and Aloimonos
(1989), most of the work on biomimetic, vision-based, wheeled robots
followed the realisation of the “robot mouche”. Another key player in
this domain was Srinivasan and his team at the Australian National
University in Canberra. They performed an extensive set of experi-
ments to understand visual performance of honeybees and tested the
resulting models on robots (for reviews, see Srinivasan et al., 1997,
1998). For example, they showed that honeybees regulate their direc-
tion of flight by balancing the speeds of image motion on the two eyes
(Srinivasan et al., 1996). This mechanism was then demonstrated on
a wheeled robot equipped with a camera and two mirrors (figure 1.3b)
that captured images of the lateral walls and transmitted them to a
desktop computer where an algorithm attempted to balance the optic-
flow in the two lateral views by steering the robot accordingly (Weber
et al., 1997). In the same research team, Sobey (1994) implemented an
algorithm inspired by insect flight to drive a vision-based robot (figure
1.3c) in cluttered environments. The algorithm related the position of
the camera, the speed of the robot, and the measured optic-flow dur-
ing translatory motions in order to judge distances from objects and
steering accordingly.

Several other groups used insect visual-control systems as mod-
els for wheeled robots, either for obstacle avoidance in cluttered en-
vironments (Duchon and Warren, 1994; Lewis, 1998) or for corridor
following (Coombs et al., 1995; Santos-Victor et al., 1995). Some of
these robots used active camera mechanisms for stabilising their gaze
in order to cancel spurious optic-flow introduced by self-rotation (see
chapter 4). All of the reviewed wheeled robots relied on the fact that
they were in contact with a flat surface in order to infer or control their
self-motion through wheel encoders. Since flying robots have no con-
tact with ground, those approaches cannot be applied to our project
without modifications (for instance the integration of other sensors).
Furthermore, the tight weight budget precludes active camera mecha-
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Figure 1.3: (a) “Robot mouche” by Franceschini’s team. Reprinted from
Franceschini (2003). (b) Corridor-following robot by Srinivasan’s team.
Reprinted from Srinivasan et al. (1998). (c) Obstacle-avoiding robot by Srini-
vasan’s team. Reprinted from Srinivasan et al. (1998).

nisms for gaze stabilisation. Finally, all the above mentioned robots,
except the “robot mouche”, featured off-board processing of 2D im-
ages, which is not the goal of our project that aims at self-contained
autonomous robots.

Aerial Robots

A few optic-flow based aerial experiments have been carried out on in-
door airships (blimps), although they were not aimed at obstacle avoid-
ance. Iida and colleagues demonstrated visual odometry and course
stabilisation (Iida and Lambrinos, 2000; Iida, 2001, 2003) using such
a platform equipped with an omnidirectional camera (figure 1.4a-b)
down-streaming images to an off-board computer for optic-flow estima-
tion. Planta et al. (2002) presented a blimp using an off-board neural
controller for course and altitude stabilisation in a rectangular arena
equipped with regular checkerboard patterns. However, altitude con-
trol produced poor results.

Specific studies on altitude control have been conducted by Frances-
chini’s team, first in simulation (Mura and Franceschini, 1994),
and more recently with tethered helicopters (figure 1.4c; Netter and
Franceschini, 2002; Ruffier and Franceschini, 2004). Although the
control was done off-board for analysis purpose, the viability of reg-
ulating altitude of a small helicopter by using the amount of ventral
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optic flow as detected by a minimalist vision system composed of only
2 photoreceptors was demonstrated. The regulation system even did
not need to know the velocity of the aircraft. Since these helicopters
were tethered, the degrees of freedom were deliberately limited to 3 and
the pitch angle could directly be controlled by means of a servomotor
mounted at the articulation between the boom and the aircraft. The
knowledge of the absolute pitch angle allowed to ensure the vertical
orientation of the optic-flow detector (active gaze stabilisation) when
the rotorcraft was tilted fore and aft to modulate its velocity.

In an attempt of using optic-flow to control altitude of a free-flying
UAV, Chahl et al. (2004) took inspiration from the honeybee’s landing
strategy (Srinivasan et al., 2000) to regulate the pitch angle using ven-
tral optic-flow during descent. However, real world experiments pro-
duced very limited results, mainly because of the spurious optic-flow
introduced by corrective pitching movements.5

In order to test a model of obstacle avoidance in flies (Tammero and
Dickinson, 2002b), Reiser and Dickinson (2003) set up an experiment
with a robotic gantry emulating the fly’s motion in a randomly textured
circular arena. This experiment successfully demonstrated robust vi-
sual steering based on biological models. Another significant body of
work in simulation (Neumann and Bülthoff, 2001, 2002) demonstrated
full 3D, vision-based navigation (attitude control based on light inten-
sity gradient; course stabilisation, obstacle avoidance and altitude con-
trol based on optic-flow). However, the dynamics of the simulated agent
was minimalist (not representative of a real flying robot) and the envi-
ronment featured a well-defined light intensity gradient, which might
not always be available in real-world conditions. Very recently, Muratet
et al. (2005) developed an efficient control strategy for obstacle avoid-
ance with a simulated helicopter flying in urban canyons. In some
respects, this strategy based on a combination of inertial and visual
information is very close to what is proposed in this thesis (chapter
5). However, this work in simulation relied on a full-featured autopilot
(with GPS, inertial measurement unit, and altitude sensor) as low-level
flight controller and made use of a relatively high resolution camera.
Those components are likely to be too heavy in reality for mounting
them on an ultra-light indoor aircraft (which was not the purpose of
the above researchers).

The attempts at automating real free-flying UAVs using bio-inspired

5See the end of section 5 in Chahl et al. (2004). See also Ruffier (2004) for other
points of criticism.
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Figure 1.4: (a-b) The blimp equipped with an omnidirectional vision system.
Reprinted from Iida (2003). (c) Outline of the tethered helicopter for altitude
control study. Adapted from Ruffier and Franceschini (2004). (d) Glider with
a lateral optic-flow detector. Reprinted from Barrows et al. (2001).

vision are quite limited. Barrows et al. (2001) reported preliminary
experiments on lateral obstacle avoidance in a gymnastic hall with a
model glider (figure 1.4d) carrying a 25g optic-flow sensor. Although
no data supporting the described results are provided, it seems that
the glider could steer away from a wall when tossed toward it at a
shallow angle. A further experiment with a 1m wingspan aircraft (see
picture in Barrows et al., 2002) were performed outdoor. The purpose
was essentially to demonstrate altitude control with a ventral optic-
flow sensor. A simple (on/off) altitude control law managed to maintain
the aircraft airborne for 15 minutes, during which 3 failures occurred
where the human pilot had to rescue the aircraft because it dropped
too close to the ground. Very recently, Green et al. (2004) carried out
an experiment of lateral obstacle avoidance with an indoor aircraft6

equipped with a laterally-mounted 4.8g optic-flow sensor. Only one

6Overall weight of this airplane with electronics and visual system is not indicated.
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trial, in which the aircraft avoids a basketball net is described and
illustrated with video screen-shots. Since only one sensor was used,
the aircraft could detect obstacles only on one side.

Although these real-world experiments by Barrows, Green and col-
leagues are remarkable, no continuous autonomous flight with obsta-
cle avoidance has been reported so far. Also lacking is a detailed analy-
sis based on flight data. Furthermore, no specific attention has been
made to spurious optic-flow signals introduced by rotations of the air-
craft. The authors assumed, more or less implicitly, that rotational
components of optic flow arising from changes in aircraft orientation
are smaller than the translational component. However, this assump-
tion usually does not hold and the issue deserves more careful atten-
tion. Finally, no frontal obstacle avoidance experiments have been de-
scribed so far.

1.2.3 Evolution of Vision-based Navigation

Instead of hand-crafting robot controllers based on biological princi-
ples, an alternative approach consists in using genetic algorithms7

(GAs). When applied to the design of robot controllers, this method
is called evolutionary robotics (ER) and goes as follows (Nolfi and Flo-
reano, 2000):

An initial population of different artificial chromosomes, each
encoding the control system (and sometimes the morphol-
ogy) of a robot, are randomly created and put in the envi-
ronment. Each robot (physical or simulated) is then let free
to act (move, look around, manipulate) according to a genet-
ically specified controller while its performance on various
tasks is automatically evaluated. The fittest robots are al-
lowed to reproduce by generating copies of their genotypes
with the addition of changes introduced by some genetic op-
erators (e.g., mutations, crossover, duplication). This process
is repeated for a number of generations until an individual is
born which satisfies the performance criterion (fitness func-
tion) set by the experimenter.

Some experiments in ER have already demonstrated successful results
at evolving vision-based robots to navigate. Those related to obstacle
avoidance are briefly reviewed in this section.

7Search procedure based on the mechanisms of natural selection (Goldberg, 1989).
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At Max-Plank Institute in Tübingen, Huber et al. (1996) carried out
a set of experiments where simulated agents evolved their visual sen-
sor orientations and sensory-motor coupling. The task of the agent was
to navigate as far as possible in a simulated corridor-like environment
with a few perpendicular obstacles. Four photodetectors were brought
together to compose two elementary motion detectors (see chapter 2),
one on each side of the agent. The simple sensory-motor architecture
was inspired from Braitenberg (1984). Despite their minimalist sensory
system, the autonomous agents successfully adapted to the task dur-
ing artificial evolution. Best evolved individuals sensor orientation and
sensory-motor coupling suitable for obstacle avoidance. Going one step
further, Neumann et al. (1997) showed that the same approach can be
applied to aerial simulated agents. The minimalist flying system was
equipped with two horizontal and two vertical elementary motion de-
tectors and evolved in the same kind of textured corridor. Although the
agents developed effective behaviours to avoid horizontal and vertical
obstacles, those results are of limited interest when it comes to physi-
cal flying robots because the simulated agents featured very basic dy-
namics and had no freedom around pitch and roll axis. Moreover, the
visual input was probably too ideal to be representative of real world
conditions.8

In our team, experiments have been carried out where a small Khep-
era robot (see chapter 3) evolved the ability to navigate in a randomly
textured environment (Floreano and Mattiussi, 2001). The robot was
equipped with a 1D camera of 16 pixels with a 36◦ field-of-view as
only sensor. Evolution found relatively quickly functional neuromor-
phic controllers capable of navigating in the environment without hit-
ting walls using a very simple genetic encoding and fitness function.
Note that unlike the experiments by Huber and Neumann, this ap-
proach did not rely on optic flow. The visual input was only pre-
processed with a spatial high-pass filter before feeding a general pur-
pose neural network. In that case, the sensory morphology was not
concurrently evolved with the controller architecture. In this disser-
tation, we demonstrate the application of the same approach to the
navigation of physical flying robots.

8Other authors evolved terrestrial vision-based robots in simulation (for example,
Cliff and Miller, 1996; Cliff et al., 1997), but the chosen tasks (pursuit and evasion)
are not directly related to the ones tackled in this thesis. The same team also worked
with a gantry robot for real-world visually-guided behaviours like shape discrimina-
tion (Harvey et al., 1994).
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In another set of experiments (Marocco and Floreano, 2002; Flore-
ano et al., 2004), both in simulation and with a real robot, explored the
evolution of active visual mechanisms allowing evolved controllers to
decide where to look while they were navigating in their environment.
Although those experiments yielded interesting results, this approach
is discarded for our application because an active camera mechanism
is too heavy for our lightweight aerial robots.

1.3 Thesis Contents

1.3.1 Methods

Our approach consists in reviewing the main biological principles en-
abling flying insects to control their flight. The principles that seems
transferable and useful in the design of autonomous flying devices
are first assessed on a wheeled robot featuring the same sensors and
processor as the flying platforms. When good results are obtained, al-
gorithms are then transferred and adapted to aerial platforms.

The experiments presented in this thesis can be divided into two
groups. In the first one, biological principles are used to hand-craft
control systems that drive the robots. In the second group, the bio-
logical principle of evolution is employed to automatically develop the
robots’ controllers.

1.3.2 Thesis Organisation

Chapter 2: Biological Principles of Flying Insects. As we are interested
in taking inspiration from flying insects, this chapter reviews biological
principles, from sensor anatomy to information processing and behav-
iour, that may be amenable to artificial implementation. This is not
a comprehensive biological description of flying insects, but rather a
pragmatic insight into selected topics from an engineering perspective.

Chapter 3: Robotic Platforms and Tools. The platforms and tools
that have been developed in order to test the proposed approach are
introduced in this chapter. The targeted robotic platform consists of a
30-gram indoor aircraft. Autonomous steering of this ultra-light flying
robot will be demonstrated in chapter 5. However, two other robots
have been employed featuring intermediate dynamic complexity. The
first one is a miniature wheeled robot allowing for rapid assessment
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of new ideas. The second one is an indoor airship (blimp) constitut-
ing a simpler and more robust aerial platform, hence enabling more
risky approaches, such as artificial evolution presented in chapter 6.
An overview is given of the three robots, their very similar electronic
equipment and sensors as well as their dynamic properties. The ex-
perimental environments adapted to the size of each robot are also
described. Additionally, the software tools allowing for interfacing and
simulation of the robots are briefly presented.

Chapter 4: Optic Flow. As will be explained in chapter 2, the detec-
tion of visual motion information plays a prominent role in the behav-
iours of flying insects. This chapter is thus devoted to optic flow, its
formal definition, its properties, and its detection. Taking into account
the very limited processing power available on-board our lightweight
robots, an efficient algorithm for estimating optic flow is proposed and
tested in real-world conditions.

Chapter 5: Bio-inspired Navigation Control. Taking inspiration from
the models and principles described in chapter 2 and fitting the con-
straints imposed by the body of the robots presented in chapter 3, we
implement basic visually-guided behaviours using optic-flow detection
introduced in chapter 4. Obstacle avoidance and altitude control are
first demonstrated on wheels. Then the control system for obstacle
avoidance is augmented with a course stabilisation mechanism and
transferred to the ultra-light airplane.

Chapter 6: Evolutionary Approach. One of the major problems faced
by engineers willing to use bio-inspiration in the process of hand-
crafting artificial systems is the overwhelming amount of details and
varieties of biological models. An alternative approach is to apply ideas
from the evolutionary process that eventually generated those animals.
The so-called artificial evolution embodies this idea of transcribing Dar-
winian principles into artificial systems. In this chapter, this alterna-
tive level of bio-inspiration is used to evolve neuromorphic controllers
for vision-based navigation. After preliminary experiments on wheels,
the method is then applied to the blimp robot. The evolutionary process
does not produce solutions based on optic flow. Nevertheless, efficient
obstacle avoidance and handling of critical situations is achieved us-
ing the same sensory modalities as in chapter 5, namely vision and
gyroscopic information.

Chapter 7: Concluding Remarks. The dissertation concludes with a
summary of the main results, potential applications and proposal for
future work.
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Finally, two appendices describe the blimp dynamics modelling
(used for flight simulation) and the embedded neural network (used in
evolutionary experiments). At the end of this document, an index pro-
vides references to important terms and the meaning of the acronyms
and abbreviations used in the dissertation.



Chapter 2

Biological Principles of Flying
Insects

The best model of a cat for biologists is another or better,
the same cat.

N. Wiener (1894-1964)

Abstract

This chapter reviews biological principles related to flight control in
insects. Looking for biological principles that are amenable to arti-
ficial implementation in indoor aircrafts, the review is organised into
three topics (or levels of analysis) that are relevant to both robotics and
animals: perception (perceptive organs), information processing, and
behaviour.

2.1 Inspiring Animals

In this thesis, we are mainly interested in flying insects because they
face constraints similar to those occurring in miniature aerial robotics,
such as minimal power consumption, ultra-low weight, and control of
fast motion in real time. Since “flying insects” is a vague notion, we
propose to rely on taxonomy to clarify which kind of flying insects are
of interest for the synthesis of our artificial systems.

The animal kingdom is divided into phyla, among which are the
arthropods composed of four classes, one of those being the insects.
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(a) Fruitfly (b) Housefly

(c) Blowfly (d) Honeybees

Figure 2.1: A set of highly capable and well-studied flying insects. (a) Fruitfly
(Drosophila), (b) housefly (Musca), (c) blowfly (Calliphora), and (d) honeybees
(Apis).

Arthropods are a phylum of invertebrate animals that have an ex-
oskeleton, a segmented body, and jointed legs. The compound eyes
of arthropods are built quite differently from the vertebrate eyes. They
are made up of repeated units, the ommatidia, each of which functions
as a separate visual receptor with its own lens (subsection 2.2.1).

Among arthropods, the most successful flying animals are found in
the insect class, which is itself divided into orders such as Diptera
(flies and mosquitoes), Hymenoptera (bees), Orthoptera (grasshop-
pers), Coleoptera (beetles), Lepidoptera (butterflies), Isoptera (termites),
Hemiptera (true bugs), etc. In this dissertation, we focus mainly on
Diptera and Hymenoptera, not only because flies and bees are gen-
erally considered good flyers, but also because a few species of these
two orders, namely the blowflies (Calliphora), the houseflies (Musca),
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the fruitflies (Drosophila), and the honeybees (Apis), have been ex-
tensively studied in biology (figure 2.1). Almost all insects have two
pairs of wings, whereas Diptera feature only one pair and their hind
wings have been transformed through evolution into tiny club-shaped
mechanosensors, named halteres, which provide gyroscopic informa-
tion (subsection 2.2.2).

The sensory and nervous systems of flies have been analysed for
decades, resulting in a wealth of electrophysiological data, models of
information processing and descriptions of behaviours. For example,
many neurons in the fly’s brain have been linked to specific visually-
guided behaviours (Egelhaaf and Borst, 1993a). Although honeybees
are capable of solving a great variety of visually controlled tasks (Srini-
vasan et al., 1996, 2000), comparatively little is known about the un-
derlying neuronal basis. However, interesting models of visually guided
strategies are available from behavioural studies.

Perception and action are part of a single closed loop rather than
separate entities, but subdividing this loop into three levels helps to
highlight the possibilities of artificial implementation. At the first level,
anatomical description of flying insects will be a source of inspiration
for constructing the robot. Although this thesis is not oriented toward
mechanical biomimetism, the choice of sensor modalities (chapter 3) is
based on perceptive organs used by insects. At the second level, mod-
els of biological information processing will guide us in the design of
sensory signal processing (chapter 4). Mainly related to vision, these
models have been essentially produced from neurophysiological stud-
ies or from behavioural experiments with tethered animals (see, e.g.,
Egelhaaf and Borst, 1993a). At the third level, the study of free-flight
behaviour (ethology) will give significant insight into how insects steer
in their environments and manage to take full advantage of their sen-
sor characteristics by using specific, stereotyped movements. Similar
behaviours will be implemented on robots in chapter 5.

In the rest of this chapter, existing descriptions of biological princi-
ples are reviewed following the same three levels. However, this brief
overview is not an extensive description of flying insect biology. Only
models relevant to the simple behaviours described in introduction (at-
titude control, course stabilisation, obstacle avoidance, and altitude
control) and that, we believe, are potentially useful for indoor aircrafts
are presented.
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Compound eyes

Ocelli

Halteres

Figure 2.2: The most important perceptive organs related to flight control:
the large compound eyes, the ocelli, and the halteres. Outline of the blowfly
Calliphora adapted from Nalbach (1993).

2.2 Sensor Suite for Flight Control

Insects have sense organs that allow them to see, smell, taste, hear
and touch their environment (Chapman, 1998). In this section, we fo-
cus on the sensors that are known to play an important role in flight
control. Whereas flying insects use many sensor modalities, their be-
haviour is mainly dominated by visual control. They use visual feed-
back to stabilise flight (Egelhaaf and Borst, 1993b), control flight speed
(Srinivasan et al., 1996; Srinivasan and Zhang, 2000), perceive depth
(Srinivasan et al., 1991; Tammero and Dickinson, 2002b), track ob-
jects (Egelhaaf and Borst, 1993b), land (Borst, 1990; Srinivasan et al.,
2000), measure self-motion (Krapp and Hengstenberg, 1996; Krapp,
2000), and estimate distances travelled (Srinivasan et al., 2000). There-
fore, the compound eye will be first presented together with the ocelli, a
set of three photosensitive organs arranged in a triangle on the dorsal
part of the head (figure 2.2). Following that, the gyroscope of Diptera,
the halteres, will be described because it is believed to provide impor-
tant input for course stabilisation. The last subsection of this review
is devoted to other perceptive organs that are probably important for
flight control but far less understood and more tightly related to aero-
dynamics rather than navigation control.
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Facet Facet

Photoreceptor Lens

ommatidium

Figure 2.3: The compound eyes of flying insects. The compound eyes are made
up of repeating units, the ommatidia, each of which functions as a separate
visual receptor. Each ommatidium consists of a lens (the front surface of
which makes up a single facet), a transparent crystalline cone, light-sensitive
visual cells arranged in a radial pattern, and pigment cells which separate the
ommatidium from its neighbours. Adapted from http://soma.npa.uiuc.edu.

2.2.1 Eyes

Flying insects (and more generally arthropods) have two large com-
pound eyes (Chapman, 1998, p.587) that occupy most of their head
(figure 2.2). Each eye is made up of tiny hexagonal lenses, also called
facets, that fit together like the cells of a honeycomb (figure 2.3). Each
lens admits a small part of the total scene that the insect sees. All
the parts together combine and form the whole picture. Underlying the
lens is a small tube, the ommatidium, containing several photosensi-
tive cells (for details, see Franceschini, 1975). For the sake of simplic-
ity, in this dissertation we assume that one ommatidium corresponds
to one viewing direction and thus to one pixel, although different kinds
of compound eyes exist with different arrangements (Land, 1997). In
insects, the number of ommatidia varies from about 6 in some worker
ants up to 30’000 in some dragonflies. In Diptera, this range is smaller
and varies from 700 in the fruitfly to 6000 ommatidia per eye in the
blowfly, covering roughly 85% of the visual field (maximum possible
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Figure 2.4: Number of pixels in artificial and biological vision systems (sin-
gle eyes). Flying insects have orders of magnitude fewer pixels than current
silicon imagers. Graph from Harrison (2000), insect data from Land (1997).

solid angle whose apex is located at the center of the eye). Taking the
square root of the number of ommatidia, the eye of the fruitfly is thus
roughly equivalent to a 26x26 pixel array covering one visual hemifield,
which is ridiculously low compared to state-of-the-art artificial vision
sensors (figure 2.4).

To compare the resolution power of vision systems, one has to con-
sider not only the number of pixels but also the covered field, or more
precisely the ratio of the field of view to the number of pixels. According
to Land (1997), many flying insects have an interommatidial angle in
the range 1-5◦ (blowfly: 1.1◦, housefly: 2.5◦, fruitfly: 5◦), and this angle
corresponds to the visual space a single ommatidia is able to sample
(acceptance angle). The best resolving power achievable by the fly’s eye,
is thus 60 times worst than human eyes, which can easily resolve 1’ of
arc. However, the compound eye configuration permits a much wider
field of view (FOV) because of the juxtaposition of small tubes aimed at
different orientation instead of a single lens and a focal plane. Indeed,
flies can see in almost any direction except for the blind spot caused by
their body.1

1See Neumann (2002) for a nice reconstruction of fly vision.
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It is remarkable that flies are capable of such impressive navigation
when considering their low-resolution, which is a consequence of the
compound eye design. Moreover, because of their eye arrangement they
cannot estimate distances from stereo-vision or focus, as outlined by
Srinivasan et al. (1999):

Unlike vertebrates, insects have immobile eyes with fixed-
focus optics. Thus, they cannot infer the distance of an object
from the extent to which the directions of gaze must converge
to view the object, or by monitoring the refractive power that
is required to bring the image of the object into focus on the
retina. Furthermore, compared with human eyes, the eyes
of insects are positioned much closer together, and possess
inferior spatial acuity. Therefore the precision with which in-
sects could estimate the range of an object through binocular
stereopsis would be much poorer and restricted to relatively
small distances, even if they possessed the requisite neural
apparatus.

However, fly vision far exceeds human eyes in the temporal domain.
Human vision is sensitive to temporal frequencies up to 20Hz, whereas
ommatidia respond to temporal frequencies as high as 200-300Hz
(Dudley, 2000, p.206). This allows flying insects to be very good at
detecting changes in the visual field, which will be refer to as optic flow
(see section 2.3 and chapter 4).

In addition to their compound eyes, many insects have three simple
photoreceptors, called ocelli. These ocelli are set in the form of a trian-
gle between the compound eyes (figure 2.2). Since they are unfocused,
they cannot form images. Rather, they are used to measure brightness
and are thought to contribute to the dorsal light response where the fly
aligns its head with sources of brightness (Schuppe and Hengstenberg,
1993). Therefore, ocelli might be used to provide information about
location of the horizon in outdoor environments.

2.2.2 Halteres

In many fast moving animals inputs from mechanosensory organs
(such as the vertebrate labyrinth) contribute to compensatory reac-
tions, being generally faster than what can be detected through the vi-
sual system and independent of lighting conditions (Nalbach and Heng-
stenberg, 1994). Diptera possess a remarkable organ for measuring an-
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gular velocities (Chapman, 1998, p.196). Their body rotations are per-
ceived through the halteres (figure 2.2), which evolved by transforma-
tion of the hind wings into tiny club-shaped organs that oscillate during
flight in antiphase with the wings (Nalbach, 1993). This mechanosen-
sor measures angular velocity by sensing the periodic Coriolis forces
that act upon the oscillating haltere when the fly rotates (Hengsten-
berg, 1991). Coriolis effects are inertial forces acting on bodies moving
in a non-inertial (rotating) reference frame (see also appendix A.5). The
forces measured by the halteres are proportional to the angular velocity
of the fly’s body.

Although the vast majority of insects can fly quite well without hal-
teres, the tiny structures appear necessary for stable flight in Diptera.
According to Dickinson (1999), haltere feedback has two roles. The first
one is gaze stabilisation:

One important role of the haltere is to stabilize the position of
the head during flight by providing feedback to the neck mo-
tor system. [...] Nalbach and Hengstenberg demonstrated
that the blowfly, Calliphora erythrocephala, discriminates
among oscillations about the yaw, pitch and roll axes and
uses this information to make appropriate compensatory ad-
justments in head position ([...]; Nalbach, 1993; Nalbach and
Hengstenberg, 1994). Such reflexes probably act to minimize
retinal slip during flight, thereby stabilising the image of the
external world and increasing the accuracy with which the
visual system encodes motion.

The second role of halteres consists in direct flight stabilisation:

Although the role of the haltere in stabilising gaze may be
important, a more essential and immediate role of the hal-
tere is to provide rapid feedback to wing-steering muscles to
stabilize aerodynamic force moments.

In summary, flight stabilisation in flies is ensured by a combination of
visual and vestibular senses (section 2.4) and both sensory modalities
are of interest for the realisation of artificial systems.

2.2.3 Other Mechanosensors

Although less thoroughly studied, it is likely that flying insects inte-
grate information from other perceptive organs to control flight. One of
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those are the campaniform sensilla (Chapman, 1998, p.195) that act
as strain gauges. About 335 of them are indeed located at the hal-
tere base for detecting Coriolis forces (Harrison, 2000). Campaniform
sensilla are also present on the wings allowing to perceive wing load
(Hengstenberg, 1991).

Aerodynamically induced bending in external structures such as
antennae potentially provides information about the changing speed
and direction of flight (Dudley, 2000). As noted by Hausen and Egel-
haaf (1989), antennae are likely to participate in the mechanosensory
feedback. Flying insects are also equipped with plenty of tiny bristles
that could help in optimising flight by providing information about air
movements and changes in air pressure. In their experiment on inter-
action between vision and haltere feedback, Sherman and Dickinson
(2004) remarked:

Posternal hairs on the neck, and wing campaniform sensilla
could contribute to both the basic response to mechanical os-
cillation and the attenuation of the visual reflex during con-
current presentation.

In his thesis, Harrison (2000) also presumes that flies are able to esti-
mate linear acceleration through proprioceptive sensors equipping the
legs and neck, which are able to measure position and strain.

Because of the lack of descriptions of how those mechano-sensors
interact with flight behaviours, the remainder of this dissertation will
primarily focus on vision and on gyroscopic information.

2.3 Information Processing

Among the sensory modalities involved in flight control, visual cues
exert the predominant influence on insect orientation and stability.
This section will thus focus on vision processing. The importance of
vision for flight is underlined by the relative size of the brain region
dedicated to processing of afferent optical information (see following
paragraph). The fly visual system has been investigated extensively
by means of behavioural experiments and by applying neuroanatom-
ical and electrophysiological techniques. Both the behaviour and its
underlying neuronal basis can sometimes be studied quantitatively in
the same biological system under similar stimulus conditions (Krapp,
2000). Moreover, the neuronal system of flying insects is far simpler
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than that of vertebrates, ensuring a better chance to link behaviour to
single neuron activity. For instance, the direct neuronal chain between
the eye and the flight muscles consists of only 6-7 cells (Hausen and
Egelhaaf, 1989). When electrophysiological investigations are not pos-
sible because, e.g., of the small size of the neurons, it is still sometimes
possible to deduce a mathematical model of the hypothetical function-
ing of neuronal circuits by recording from higher-level, downstream
neurons.

2.3.1 Optic Lobes

The optic lobes (i.e., peripheral parts of the nervous system in the head,
see figure 2.5) of flies are organised into three aggregates of neurones
(also called ganglia or neuropils), namely the lamina, the medulla, and
the lobula complex (lobula and lobula plate), corresponding to three
centers of vision processing. The retinotopic2 organisation is main-
tained through the two first neuropils down to the third one, the lob-
ula, where massive spatial integration occurs and information from
very different viewing directions are pooled together.

• The lamina lies just under the receptor layer of the eye and re-
ceives direct input from photoreceptors. The neurons in this
ganglion act as high-pass filters by amplifying temporal changes.
They also provide a gain control functionality that ensures quick
adaptation to varying background light. Axons from the lamina in-
vert the image from front to back while projecting to the medulla.

• Cells in the medulla are extremely small and difficult to record
from (see, e.g., Douglass and Strausfeld, 1996). However, behav-
ioural experiments suggest that local motion detection (subsec-
tion 2.3.2) occurs at this level. The retinotopic organisation is still
present in this second ganglion and there are about 50 neurons
per ommatidia. The medulla then sends information to the lobula
complex.

• The third optic ganglion, the lobula complex, is the locus of mas-
sive spatial convergence. Information from several thousand pho-
toreceptors, preprocessed by the two previous ganglia, converges
onto a mere 60 cells in the lobula plate (Hausen and Egelhaaf,

2The neighbourhood is respected, that is, neurons connected to neighbouring om-
matidia are next to each other.
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Figure 2.5: The fly’s visual and central nervous system (cross section through
the fly’s brain). Photoreceptors signals are transmitted to the lamina, which
accentuates temporal changes. A retinotopic arrangement is maintained
through the medulla. The lobula plate is made up of wide-field, motion-
sensitive tangential neurons that send information to the controlateral optic
lobe as well as to the thoracic ganglia, which control the wings. Adapted from
http://soma.npa.uiuc.edu.

1989). These so-called tangential cells (or LPTC for Lobular Plate
Tangential Cells) have broad dendritic trees that receive synaptic
inputs from large regions of the medulla, resulting in large visual
receptive fields (subsection 2.3.3). The lobula complex projects to
higher brain centers and to descending neurons that carry infor-
mation to motor centers in the thoracic ganglia.

From an engineering perspective, the lamina provides classical func-
tionalities of image preprocessing like temporal and spatial high-pass
filtering and adaptation to background light. Although useful in gen-
eral, those functionalities will not be further described nor imple-
mented in our artificial systems because of the relative visual simplicity
of the experimental environments (section 3.4). The two following gan-
glia, however, are more interesting since they feature typical properties
used by flying insects to control their flight. Specificities of medulla and
lobula shall thus be further described in the two following paragraphs.
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Figure 2.6: Correlation-type elementary motion detector after Reichardt
(1969). See text for details. Outline reprinted from Neumann and Bülthoff
(2002).

2.3.2 Local Motion Detection

Although the use of image motion (or optic flow) in insects is widely
recognised as the primary visual cue for in-flight navigation, the neu-
ronal mechanisms underlying local motion detection in the medulla
are still elusive (Franceschini et al., 1989; Single et al., 1997). How-
ever, behavioural experiments coupled with recordings from the tan-
gential cells in the lobula led to the proposal of functional models of
local motion detection. The best-known is the so-called correlation-
type elementary motion detector (EMD) first proposed by Hassenstein
and Reichardt (1956), in which intensity changes in neighboring om-
matidia are correlated (Reichardt, 1961, 1969). This model has been
initially proposed to account for the experimentally observed optomotor
response in insects (Götz, 1975). This behaviour tends to stabilise the
insect’s orientation with respect to the environment and is evoked by
the apparent movement of the visual environment.

An EMD of the correlation type basically performs a multiplication of
input signals received by two neighbouring photoreceptors (figure 2.6).
Prior to entering the multiplication unit, one of the signals is delayed
(usually by a first order low-pass filter), whereas the other remains un-
altered. Due to these operations, the output of each multiplication unit
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responds preferentially to visual stimuli moving in one direction. By
connecting two of them with opposite directional selectivities as excita-
tory and inhibitory elements to an integrating output stage, one obtains
a bidirectional EMD (see also Borst and Egelhaaf, 1989, for a good re-
view of the EMD principle). This popular model has been successful
at explaining electrophysiological responses of tangential cells to visual
stimuli (see, e.g., Egelhaaf and Borst, 1989) and visually-elicited be-
havioural responses (see, e.g., Borst, 1990).

On the other hand, it is important to stress that this detector is
not a pure velocity detector. Indeed, it is sensitive to the contrast fre-
quency of visual stimuli and therefore confounds the angular velocity
of patterns with their spatial structure (Reichardt, 1969; Egelhaaf and
Borst, 1989; Franceschini et al., 1989; Srinivasan et al., 1999)3. The
correlation-type EMDs are tuned to temporal frequency, rather than
to angular velocity, as outlined by the summary of the optomotor re-
sponse experiment in figure 2.7.

Although visual motion processing in insects has been studied and
characterised primarily through the optomotor response, alternative
techniques have led researchers to contradictory conclusions about lo-
cal motion detection. In the 1980s, stimulating the fly retina at the sin-
gle photoreceptor level and recording activity of a tangential cell in the
lobula, Franceschini and colleagues arrived at a different scheme of lo-
cal motion detection based on lateral facilitation of a high-pass filtered
signal (Franceschini et al., 1989; Franceschini, 2004). The basic idea is
that an intensity change detected by a photoreceptor provokes a slowly
(exponentially) decaying signal that will be sampled by an impulse due
to the same intensity change arriving at the neighbouring photorecep-
tor. This “facilitate-and-sample” scheme was later implemented in an
analog VLSI vision chip (Kramer et al., 1995; Indiveri et al., 1996).

Other studies with free-flying bees have identified several other visu-
ally elicited behaviours that cannot be explained by optomotor response
and the correlation-type EMD model. These behaviours are the center-
ing response where honeybees tend to balance image velocity on ei-
ther side when negotiating a narrow gap, the regulation of flight speed,
and the landing strategy (see subsection 2.4.4 for further description).
They all appear to be mediated by a motion detection mechanism that
is sensitive primarily to the speed of the visual stimulus, regardless of
its spatial structure or the contrast frequency that it produces (Srini-

3However, recent work has shown that for natural scenes, enhanced Reichardt
EMDs could produce more reliable estimates of image velocity (Dror et al., 2001).
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Figure 2.7: The optomotor response of insects. If a flying insect is suspended
in a rotating striped drum, it will attempt to turn in the direction of rotation
of the drum. The resulting yaw torque is a measure of the strength of the
optomotor response. For stripes of a given angular period (as in (a)), the nor-
malised strength of the optomotor response is a bell-shaped function of the
rotational speed of the drum, peaking at a specific angular velocity of rota-
tion (solid curve, (d)). If the stripes are made finer (as in (b)), one obtains a
similar bell-shaped curve, but with the peak shifted toward a lower angular
velocity (dashed curve, (d)). If they are made coarser (as in (c)), the peak res-
ponse occurs at higher angular velocities (dot-dashed curve, (d)). However,
the normalised response curves coincide with each other if they are re-plotted
to show the variation of response strength with the temporal frequency of op-
tical stimulation that the moving striped pattern elicits in the photoreceptors,
as illustrated in (e). Thus, the optomotor response that is elicited by mov-
ing striped patterns is tuned to temporal frequency rather than to angular
velocity. Adapted from Srinivasan et al. (1999).

vasan et al., 1999). This finding is supported by an experiment with
free-flying Drosophila where the flies demonstrated a good insensitivity
to spatial frequency when keeping ground speed constant by maintain-
ing image motion at a preferred value, while presented with various
upwind intensities (David, 1982).

A neurobiologically realistic scheme for measurement of the angu-
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lar speed of an image, independent of its structure or contrast, has
been proposed (Srinivasan et al., 1991). This non-directional model
is still hypothetical, although recent physiological studies have high-
lighted the existence of distinct pathways in the optic lobes responsi-
ble for directional and non-directional motion detection (Douglass and
Strausfeld, 1996). Unlike Reichardt’s (correlation-type) and Frances-
chini’s (facilitate-and-sample) models, Srinivasan’s model fairly accu-
rately encodes the absolute value of image velocity but not the direction
of motion. Note that non-directional motion detection is sufficient, at
least for some of the above-mentioned behaviours, like the centering
response.

It is interesting to notice that the Reichardt model is so well es-
tablished that it has been widely used in bio-inspired robotics (e.g.,
Huber, 1997; Harrison, 2000; Neumann and Bülthoff, 2002; Reiser
and Dickinson, 2003; Iida, 2003), although some noticeable departures
from it exist (Weber et al., 1997; Franz and Chahl, 2002; Ruffier and
Franceschini, 2004). In our case, after (unreported) preliminary trials
with artificial implementation of correlation-type EMDs, it became clear
that more accurate image velocity detection (i.e., independent of image
contrast and spatial frequency) would be needed for the aircrafts. We
therefore looked for non-biologically-inspired algorithms producing ac-
curate and directional image motion estimates and selected the image
interpolation algorithm (also proposed by Srinivasan, see chapter 4).
To clearly notify the difference, instead of using the term EMD, we will
use optic flow detector (OFD) to refer to the implemented scheme for
local motion detection. Of course, the fact that local motion detection
is required as a preprocessing stage in flying insects is widely accepted
among biologists and is applied to our bio-inspired robots as well, even
if the scheme for computing local optic flow is not proposed in biology.

2.3.3 Analysis of Motion Fields

Visual motion stimuli occur in a stationary environment when the in-
sect is moving because during self-motion the retinal images are con-
tinually displaced. The resulting retinal motion patterns depend in a
characteristic way on the trajectory described by the insect and on the
3D structure of the visual surroundings. These motion patterns there-
fore contain information that tells the insect about its own motion or
the distances to potential obstacles. However, this information cannot
be directly retrieved at the local level and optic flow from different re-
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Figure 2.8: Global structure of translatory and rotatory optic flow fields. (a)
Motions of a fly can be described by their translatory (thrust, slip, lift) and
rotatory (roll, pitch, yaw) components around the 3 body axes (longitudinal,
transverse, vertical). The different motion components induce different optic
flow fields over both eyes of the moving animal. For simplicity, equal distances
from the objects in a structured environment are assumed. (b) Optic flow field
caused by a lift translation. (c) Optic flow field caused by a roll rotation.
Optic flow patterns are transformed from the visual unit sphere into Mercator
maps to show the entire visual space. Visual directions are defined by the
angles of azimuth and elevation. The encircled f (frontal) denotes the straight-
ahead direction of the fly. Globally, the two optic flow fields can easily be
distinguished from one another. However, this distinction is not possible at
the level of local motion detectors. See, e.g., the optic flow vectors indicated
in the boxes: local motion detectors at this place would elicit exactly the same
response irrespective of the motion. Adapted from Krapp et al. (1998).

gions of the visual field must generally be combined in order to infer
behaviourally significant information (see, e.g., figure 2.8).

Analysis of the global motion field (or at least several different re-
gions) is thus generally required in order for the local measurements
to be exploited at the behavioural level. Some sort of spatial integra-
tion is known to happen after the medulla (where local motion detec-
tion occurs retinotopically), mainly in the lobula plate where tangential
neurons receive input from large receptive fields (Hausen and Egel-
haaf, 1989). The lobula plate thus represents a major centre of optic
flow field analysis. Some of the 60 neurons of the lobula plate are
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known to be sensitive to coherent large-field motion (i.e., the VS, HS
and Hx-cells), whereas other neurons, the figure detection cells (FD-
cells), are sensitive to relative motion between small objects and back-
ground (Egelhaaf and Borst, 1993b; Krapp and Hengstenberg, 1996).
As an example of the usefulness of these neurons at the behavioural
level, there is good evidence that HS and VS-cells are part of the sys-
tem that compensates for unintended turns of the fly from its course
(Krapp, 2000).

Detection of Self-motion

Quite recently, neuroscientists have analysed the specific organisation
of the receptive fields, i.e., the distribution of local preferred directions
and local motion sensitivities, of about 30 tangential cells in the lobula.
They found that the response fields of VS neurons are not uniform but
resemble rotatory optic flow fields that would be induced by the fly
during rotations around various horizontal axes (Krapp et al., 1998).
In contrast to the global rotatory structure within VS response fields,
the response field of Hx cells shows the global structure of a translatory
optic flow field (Krapp and Hengstenberg, 1996). The response fields of
HS cells are somewhat more difficult to interpret since they probably do
not discriminate between rotatory and translatory components (Krapp,
2000). In summary, all is happening as if tangential cells were acting
as neuronal matched filters (Wehner, 1987) tuned to particular types of
wide-field motion (figure 2.9). It is also interesting to notice that those
receptive-field organisations are highly reliable at the interindividual
level (Krapp et al., 1998) and seem to be independent of early sensory
experience of the fly. That means that the specificity of these cells to
optic flow fields have probably evolved on a phylogenetic time scale
(Karmeier et al., 2001).

Franz and Krapp (2000) had some success at estimating self-motion
of a simulated agent based on this theory of visual matched filters.
However, Krapp (2000) warns us about too simplistic interpretations of
this biological model of spatial integration:

[Some] approaches take for granted that the results of the lo-
cal motion estimates are summed up in a linear fashion at
an integrating processing stage. For insect visual systems,
however, it was found that local motion analysis is achieved
by elementary motion detectors whose output is not sim-
ply proportional to velocity [...] but also depends on pattern
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Figure 2.9: Hypothetical filter neuron matched to a particular optic flow field
induced by self-motion (e.g., rotation). Local motions of the optic flow field
locally activate those motion detectors with appropriate preferred directions.
A wide-field neuron selectively collects and spatially integrates the signals of
these motion detectors. Hence it would be most sensitive to that particular
optic flow and consequently to the self-motion that caused the flow. Adapted
from Krapp et al. (1998).

properties like spatial wavelength and contrast [...]. Hence,
it remains unclear how biological sensory systems cope with
highly dynamic stimuli as encountered, for instance, by the
fly during free flight. It is by no means easy to predict the
signals of the tangential neurons under such natural condi-
tions.

Another problem is that tangential neurons like the VS cells cannot be
expected to be insensitive to optic flow components induced by move-
ments that are not their own preferred self-motion. Output of those
neurons needs to be corrected for apparent rotations, which may be
due to translatory self motions and to rotations around axes other than
the preferred axis. In fact, the use of visual or gyroscopic information
for correcting such errors is a recurrent question which is not totally
resolved yet. After Krapp (2000),

The signals necessary to correct for these erroneous response
contributions could be supplied by other wide field neurons.
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Or, alternatively:

Correction signals encoding fast self-rotations may also be
supplied by the haltere system (Nalbach, 1994). Because the
dynamic range of the haltere system is shifted toward higher
angular velocities, it is thought to complement the visual self-
motion estimation (Hengstenberg, 1991).

The computational properties of tangential neurons have mainly been
characterised in tethered flies with simplistic visual stimuli (e.g., Krapp
et al., 1998). A recent study where blowflies were presented with be-
haviourally relevant visual inputs suggests that responses of tangential
cells are very complex and hard to predict based on the results obtained
with simplistic stimuli (Lindemann et al., 2003). As explained by Egel-
haaf and Kern (2002), only few experiments with natural stimuli have
been done and even less in closed-loop situation:

Neuronal responses to complex optic flow as experienced
during unrestrained locomotion can be understood only
partly in terms of the concepts that were established on the
basis of experiments done with conventional motion stimuli.
[...] It is difficult to predict the performance of the system
during complex flight manoeuvres, even when wiring dia-
grams and responses to simplified optic-flow stimuli are well
established.

Perception of Approaching Objects

Apart from the widely covered topic of tangential cells in the lobula
plate and their resemblance to matched filters, another model of wide
field integration has been proposed to explain the detection of imminent
collision. Here the purpose is about estimating distance from objects
or time to contact (TTC), rather than detecting self motion. Looming
stimuli (expanding images) have long been thought to act as an essen-
tial visual cue for detecting imminent collisions (see, e.g., Lee, 1976).
When tethered flying flies encounter a looming stimulus, they extend
their forelegs in preparation to land. This landing response has been
shown to be triggered by visual looming cues (Borst and Bahde, 1988).
Experiments show that the latency of the landing response is recipro-
cally dependent on the spatial frequency content and on the contrast
of the pattern, as well as the duration of its expansion. Therefore,
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Figure 2.10: The so-called STIM (spatio-temporal integration of motion) model
underlying the landing response of the fly. The output of directionally selective
correlation-type movement detectors are pooled from each eye. These large-
field units feed into a temporal leaky integrator. Whenever the integrated
signal reaches a fixed threshold landing is released and a preprogrammed leg
motor sequence is performed to avoid crash-landing. Figure from Borst and
Bahde (1988).

Borst and colleagues proposed a model based on a spatial integration
of correlation-type EMDs (figure 2.10), which present the same kind
of dependence on spatial frequency and contrast (subsection 2.3.2).
Very recently, Tammero and Dickinson (2002a) have shown that colli-
sion avoidance manoeuvres could also be explained by the perception
of image expansion as detected by an array of local motion detectors
(subsection 2.4.3).

So far, neurons extracting image expansion from the retinotopic ar-
ray of local motion detectors have not been found at the level of the
lobula complex (Egelhaaf and Borst, 1993b). In the cervical connec-
tive (just below the brain in figure 2.5), however, cells are known to be
sensitive to retinal image expansion. These neurons, which respond
strongest when the animal approaches an obstacle or a potential land-
ing site, have been proposed to be part of the neuronal circuit initiating
the landing response (Borst, 1990).

Other biologists have proposed similar schemes, although based on
pure time to contact and thus without any dependency on contrast
or spatial frequency, for explaining deceleration of flies before landing
(Wagner, 1982) or stretching of wings in plunging gannets (Lee and
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Reddish, 1981). From a functional point of view, it would obviously be
advantageous to use a strategy that estimates time to contact indepen-
dently of the spatial structure of the object being approached. Indeed,
if the underlying local optic flow detection is a true image velocity de-
tection, the measure of time to contact can be directly extracted from
optic flow measurements (Poggio et al., 1991; Ancona and Poggio, 1993;
Camus, 1995).

In summary, individual cells (either in the lobula or in the cervical
connective) receive inputs from many local motion detectors and gen-
erate output signals that appear tuned to estimate particular features
of the global optic flow field that flying insects experience during flight.
Spatial integration of local optic flow vectors is thus a necessary oper-
ation to provide useful information for several behaviours like course
stabilisation, landing, obstacle avoidance, etc. In our artificial systems,
although the weight limitations of our aircrafts do not permit the pres-
ence of many local motion detectors as in flying insects, some kind of
spatial integration is used to detect typical patterns of optic flow. In
particular, the information processing algorithm for detection of immi-
nent collision of the airplane is based on the STIM model (figure 2.10).

2.4 In-Flight Behaviours

As seen before, visual motion and mechanosensors are exploited by
insects to gain information on the 3D layout of the environment and
the rate of self-motion in order to control behaviours. In this section,
a set of four behaviours are reviewed together with links to possible
underlying information processing strategies presented in the previous
section. This restricted palette of behaviours is not a representative
sample of the biological literature, but was selected as a minimal set
of control mechanisms that could allow an aircraft to fly in enclosed
environments.

2.4.1 Attitude Control (ATC)

One of the primary requirements for a flying system is to be able to
control its attitude in order to stay the right way up or bank to turn
(Horridge, 1997). The attitude of an aerial system is defined by its
pitch and roll angles (see figure 2.8a). The so-called passive stabil-
ity encompasses simple mechanisms providing flight equilibrium. For
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instance, the fact that insect wings are inserted above the center of
gravity provides some degree of passive stability around the roll axis
(Chapman, 1998, p.214). Other aerodynamic characteristics of the in-
sect body provide partial compensation for unintended pitch torques
(Dudley, 2000, p.203). However, in small flapping-wing insects rely-
ing on unsteady-state aerodynamics4, such passive mechanisms can
compensate only for a small subset of unintentional rotations.

Other mechanisms of active stability are thus required in insects
for attitude control. One of those is the so-called dorsal light response
(Schuppe and Hengstenberg, 1993) by which insects attempt to bal-
ance the level of light received in each of their three ocelli (subsection
2.2.1). This response is believed to help insects at keeping their attitude
aligned with the horizon (Dudley, 2000, p.212). Such mechanisms have
been proposed for attitude control in simulated flying agents (Neumann
and Bülthoff, 2002). For indoor environments, however, we believe that
this approach is nearly impossible. If insects controlled their attitude
exclusively by means of a dorsal light response, they would sometimes
have a tendency to fly at unusual angles when flying among obstacles
that partially occlude light sources. The fact that this does not occur
indicates that other stimuli are also important, although not yet fully
understood (Chapman, 1998, p.216).

It is probable that optic flow (subsection 2.3.3) provides efficient
cues for pitch and roll stabilisation in a way functionally similar to the
optomotor response (primarily studied for rotations around the yaw
axis). However, optic flow depends on angular rate and not on absolute
angles. Therefore, such mechanisms fail to provide a reliable vertical
reference. The same holds for the halteres (subsection 2.2.2), which
are also known to help at regulating pitch and roll velocities but are
not able to provide an absolute reference.

In artificial systems, like aircrafts relying on steady-state aerody-
namics, passive stabilisation mechanisms are often sufficient to give
strong compensation torques to eliminate pitch and roll. For instance,
a non-zero angle between the left and right wings (called dihedral, see
subsection 3.1.3 for further details) help for maintaining the wings hor-
izontal, whereas a low center of gravity and/or a well-studied tail geom-
etry provides good pitch stability5. The aircrafts described in this thesis

4Direction, geometry and velocity of airflow change over short time intervals.
5Note however, that rotorcrafts are far less passively stable than planes and active

attitude control of such systems is a delicate issue because propriocetive sensors like
inclinometers are perturbed by accelerations.
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operate within the range of steady-state aerodynamics and therefore do
not need active attitude control, such as the dorsal light response.

2.4.2 Course (and Gaze) Stabilisation (CS)

Maintenance of stable flight trajectory is not only useful for travelling
from a point to another, but also to facilitate depth perception of flying
insects, as pointed out by Krapp (2000):

Rotatory self-motion components are inevitable conse-
quences of locomotion. The resulting optic-flow component,
however, does not contain any information about the 3D lay-
out of the environment. This information is only present
within translatory optic-flow fields. Thus for all kinds of
long-range and short-range distance estimation tasks, a pure
translatory optic flow field is desirable (Srinivasan et al.,
1996; [...]). One possibility to, at least, reduce the rota-
tory component in the optic flow is to compensate for it by
means of stabilising head movements and steering maneu-
vers. These measures can be observed in the fly but also in
other visually oriented animals, including humans.

The well-known optomotor response (introduced in subsection 2.3.2),
which is evoked by the apparent movement of the visual environment,
tends to minimize image rotation during flight and helps the insect to
maintain a straight course (Srinivasan et al., 1999). Hence, course
stabilisation of flying insects relies essentially on the evaluation of the
retinal motion patterns perceived during flight and reviewed in sub-
section 2.3.3. Haltere feedback is also known to play an important
role in course stabilisation as well as in gaze or head6 orientation. As
suggested in Krapp’s statement, rapid head compensation helps at can-
celling rotational optic flow before the rest of the body has time to react
(Hengstenberg, 1991). In the free-flying blowfly, the angular velocities
of the head are approximately half those of the thorax during straight
flight (van Hateren and Schilstra, 1999) .

The integration of visual and gyroscopic modalities for course and
gaze stabilisation is very complicated and not yet fully understood.
Chan et al. (1998) have shown that motoneurons innervating muscles
of the haltere receive strong excitatory input from visual interneurons

6In this context, gaze or head control have the same meaning because insect eyes
are mostly solidly attached to the head.
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such that visually guided flight manoeuvres may be mediated in part by
efferent modulation of hard-wired equilibrium reflexes. Sherman and
Dickinson (2004) have proposed a model of stabilisation where sensory
inputs from halteres and the visual system are combined in a weighted
sum. What is better understood is that fast rotations are predomi-
nantly detected and controlled by mechanosensory systems whereas
slow drift and steady misalignments are perceived visually (Hengsten-
berg, 1991).

Whatever the sensory modality used to implement it, course stabili-
sation clearly is an important mechanism in flying systems. On the one
hand, it allows to counteract unwanted deviations due to turbulences.
On the other hand, it provides the visual system with less intricate optic
flow fields (i.e., exempt from rotational components), hence facilitating
depth perception.

2.4.3 Obstacle Avoidance (OA)

As seen in subsection 2.3.3, an approach trajectory that is almost per-
pendicular to a surface would generate strong looming cues, which can
serve as imminent collision warnings. Work by Wagner (1982), as well
as Borst and Bahde (1988), has shown that deceleration and exten-
sion of the legs in preparation for landing are triggered by large-field,
movement-detecting mechanisms that sense expansion of the image.
Instead of landing, flying insects could decide to turn away from the
looming object in order to avoid it.

This indeed has been recently studied by Tammero and Dickinson
(2002b). The flight trajectories of many fly species consist of straight
flight sequences7 interspersed with rapid changes in heading called
saccades (Collett and Land, 1975; Wagner, 1986; Schilstra and van
Hateren, 1999). Tammero and Dickinson (2002b) have reconstructed
the optic flow seen by free-flying Drosophila. Based on the results, they
proposed a model of saccade initiation using the detection of visual ex-
pansion, an hypothesis that is consistent with open-loop presentation
of expanding stimuli to tethered flies (Borst, 1990). Although differ-
ences in the latency of the collision-avoidance reaction with respect
to the landing response suggest that the two behaviours are mediated
by separate neuronal pathways (Tammero and Dickinson, 2002a), the
STIM model proposed by Borst (1990) and reprinted in figure 2.10 rep-

7During which the course stabilisation mechanisms described above are probably
acting.
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resents a good understanding of the underlying mechanism. Several
implementations of artificial systems capable of avoiding collisions have
been done using a variant of this model. The implementation being
most closely inspired by the experiments from Tammero and Dickinson
(2002b) was developed in that same laboratory (Reiser and Dickinson,
2003).

2.4.4 Altitude Control (ALC)

Altitude control in insects is a behaviour that has almost never been
directly studied in insects. It represents however an important ba-
sic mechanism for roboticists interested in building autonomous flying
machines. In this section, we shall thus consider related behaviours
that help to understand how an aerial system could regulate altitude
using visual motion cues. Those behaviours, particularly studied in
honeybees, are the centering response, the regulation of flight speed,
and the grazing landing.

Bees flying through a narrow gap or a tunnel have been shown to
maintain equidistance to the flanking walls (centering response) by bal-
ancing the apparent speeds of the retinal images on either side (Srini-
vasan et al., 1996, 1997). The experiments reported by Srinivasan
et al. (1991) demonstrate unequivocally that flying bees estimate lat-
eral distances from surfaces in terms of the apparent motion of their
images, moreover largely independently of their spatial frequency or
contrast. In the flight speed regulation behaviour (Srinivasan et al.,
1996, 1997; Srinivasan, 2000), the speed of flying bees is shown to be
controlled by maintaining constant average image velocity as seen by
the lateral regions of the two eyes. This arguably avoids potential colli-
sions by ensuring that the insect slows down when flying through nar-
row passages. The grazing landing (as opposed to the landing response
described in subsection 2.4.3) describes how bees execute a smooth
touchdown on horizontal surfaces (Srinivasan et al., 1997, 2000). In
this situation, looming cues are weak because the landing surface is
almost parallel to the flight direction. Once again, bees are shown
to hold the image velocity of the surface in the ventral part of their
eyes constant as they approach it, thus automatically ensuring that
the flight speed is close to zero at touchdown. These three behaviours
clearly demonstrate the ability of flying insects to regulate self-motion
using translational optic flow. The advantage of such strategies is that
the control is achieved by a very simple process, and without explicit
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knowledge of the distance from the surface (Srinivasan and Zhang,
2000).

Observation of migrating locusts have shown that these animals
tend to hold constant the optic flow experienced in the ventral part
of their eyes (Kennedy, 1951). This ventral optic flow is proportional
to the ratio between forward speed and altitude. Taking inspiration
from these observations, Ruffier and Franceschini (2003) proposed an
altitude control system, an optic flow regulator, that keeps the ven-
tral optic flow at a reference value. At a given ground speed, holding
the ventral optic flow constant leads to level flight at a given height.
If the forward speed happens to decrease (deliberately or as a conse-
quence of wind), the optic flow regulator produces a decrease in al-
titude. This optic flow regulator was implemented on a tethered heli-
copter and demonstrated efficient altitude control and terrain following.
Ruffier and Franceschini (2004) also showed that the same strategy
could generate automatic takeoff and landing, and suitable descent or
ascent in the presence of wind, as actually observed in migrating lo-
custs (Kennedy, 1951).

One of the major problems of such strategies lies, once again, in the
perturbation of the translational flow field by rotational components.
In particular, every attitude correction will result in rotation around
the pitch or roll axes and indeed create rotational optic flow. Hence
a system correcting for these spurious signals is absolutely required.
In flying insects, this could be accomplished by gaze stabilisation (de-
scribed in subsection 2.4.2). In artificial systems, the vision system
could be actuated and regulated such as to remain vertical (this solu-
tion was adopted in Ruffier and Franceschini, 2004). However, such a
mechanism requires a way to measure attitude angles in a non-inertial
frame, which is a non-trivial task. Another solution consists in mea-
suring angular rates with an inertial system (gyroscope) and directly
subtracting rotational components from the global optic flow field.

2.5 Summary

Attitude control (subsection 2.4.1) in insects is probably required in
order to provide stable reference for using vision during motion (Hor-
ridge, 1997); and in turn, vision seems to be the primary cue for con-
trolling attitude. The same holds for course stabilisation (subsection
2.4.2) whereby straight trajectories allow for cancellation of rotatory
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optic flow and easier interpretation of optic flow for distance estima-
tion. This shows once again that perception, information processing,
and behaviour are tightly connected and organised into a loop where
adequate behaviour is not only needed for navigation (and, more gen-
erally, survival), but also a prerequisite to efficient perception and in-
formation processing. This idea is equally highlighted by biologists like
Egelhaaf et al. (2002):

Evolution has shaped the fly nervous system to solve effi-
ciently and parsimoniously those computational tasks that
are relevant to the survival of the species. In this way an-
imals with even tiny brains are often capable of performing
extraordinarily well in specific behavioural contexts.

Therefore, when taking inspiration from biology, it is worth to look at
those different levels as being tightly connected to each other, rather
than trying to design artificial systems behaving like animals while fea-
turing highly precise, Cartesian sensors, or, on the other hand, creat-
ing robots with biomorphic sensors for cognitive tasks. Following this
advice, our robot design takes inspiration from flying insects at the
following three levels:

• Perception. The choice of sensor modalities is largely based on
those of flying insects. Only low-resolution vision and gyroscopic
information (chapter 3) are used to feed the control system.

• Information processing. In the experiments of chapter 5, the way
information is processed is largely inspired from what has been
described in this chapter. Visual input is first preprocessed with
an algorithm producing local motion detection (chapter 4). Data
from local motion estimates is then spatially integrated and com-
bined with gyroscopic information in order to provide the control
system with meaningful information.

• Behaviour. Based on this preprocessed information, the control
system is then designed so to reproduce the insect behaviours
presented in section 2.4 that fit exactly that choice of sensors
and processing. The resulting system provides robots with basic
navigational capabilities (i.e., course stabilisation, obstacle avoid-
ance and altitude control), which enable them to move around
autonomously, without colliding with obstacles.





Chapter 3

Robotic Platforms and Tools

Flies are objectionable in many ways, but they now add
insult to injury by showing that it is definitely possible
to achieve the smartest sensory-motor behavior such as
3D navigation at 500 body-lengths per second using quite
modest processing resources.

N. Franceschini (2004)

Abstract

This chapter presents a set of three mobile robots developed within this
thesis to serve as a basis for assessment of the proposed biologically
inspired strategies. They are a miniature wheeled robot for prelimi-
nary tests, an indoor airship, and an ultra-light fixed-wing airplane. In
spite of the fundamental differences regarding their body shapes, ac-
tuators and dynamics, the three robotic platforms share several elec-
tronic components in order to ease the transfer of software, processing
schemes and control systems from one to another. Obviously, these
robots do not attempt to reproduce the bio-mechanical principles of in-
sect flight. However, the perceptive modalities present in flying insect
are taken into account in the selection of sensors. Next to the plat-
forms, we also shortly present the software tools used for interfacing
the robots and simulating them. We conclude this chapter with an
overview of the experimental arenas and their respective characteris-
tics.
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3.1 Platforms

The three platforms are introduced in order of increasing complexity,
and not in the order they will be used for experiments in the following
chapters. This section focuses on the structure and dynamic properties
of the different robots, whereas the next section presents the electronic
components and sensors, which are largely compatible among the three
platforms. The minimum set of control mechanisms (according to sec-
tion 2.4) required by each platform is also mentioned along with their
descriptions. At the end of the section, a comparative summary the
platforms’ main characteristics is provided.

3.1.1 Miniature Wheeled Robot

The popular Khepera (Mondada et al., 1993) is our “battle horse”
for preliminary testing of control strategies. The Khepera is a simple
and robust differential-drive robot that has proved to be suitable for
long-lasting experiments typical in evolutionary robotics (Nolfi and Flo-
reano, 2000). It can withstand collisions with obstacles, does not over-
heat when its motors are blocked, and can easily be externally powered

Khepera base

Proximity sensors

kevopic extension turret with
microcontroller & gyroscope

Wheels with encoder

Camera

1cm

Figure 3.1: The Khepera robot equipped with the custom extension turret
kevopic.
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via a rotating contact hanging above the experimental arena, therefore
releasing the experimenter from the burden of changing batteries peri-
odically.

To enable good compatibility with the aerial platforms, the Khepera
has been augmented with a custom turret (figure 3.1). The so-called
kevopic (Khepera, evolution, PIC) turret features the same core micro-
controller and interfacing capabilities as the boards equipping the fly-
ing robots. Kevopic also supports the same vision and gyroscopic sen-
sors (subsection 3.2.2). This turret has been developed because the
basic Khepera microcontroller, a MotorolaTM MC68331 was not suit-
able for flying robots (too heavy and power consuming) and could not
be programmed with the same development environment as the micro-
controller selected for the aerial platforms (subsection 3.2.1).

The sensing capabilities of the underlying standard Khepera can still
be accessed from the kevopic. Beside the two main sensor modalities
(vision and gyroscope), this wheeled platform features wheel encoders
and 8 infrared proximity sensors. In this thesis, those additional sen-
sors are never used as inputs to the navigation controller because they
are neither available in the flying robots nor present in flying insects.
However, they are useful in the process of analysing the performances
of the bio-inspired controllers. For instance, the proximity sensors al-
low to know whether the robot is close to arena borders and the wheel
encoders enable the plotting of the produced trajectories with a reason-
able precision over a relatively short period of time.

The Khepera moves on a flat surface and has 3 degrees of freedom
(DOF). Therefore, it is an ideal candidate for testing obstacle avoidance
(OA) algorithms without requiring course stabilisation (CS). Since it is
in contact with the floor and has negligible inertial forces, the trajectory
is determined solely by wheel speeds. It is sufficient to issue the same
motor command on the left and on the right wheels in order to move
straight. Of course, attitude and altitude control (ATC and ALC) are
not required on this robot since it moves on a flat surface. However,
in chapter 5, we shall employ the Khepera to demonstrate vision-based
ALC by orienting the camera laterally (figure 3.9) and doing wall follow-
ing. From a bird-eye perspective, the wall replaces the ground and, at
first approximation, the heading direction of the Khepera as the pitch
angle of an airplane.
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3.1.2 Indoor Airship

When it comes to flying robots, one has to choose a lift methods among
the existing ones: aerostat, fixed-wing, flapping-wing, rotorcraft, and
jet-based. The most simplest from a mechanical and structural per-
spective is probably the aerostat principle.

Blimps as Robotic Platforms

After Archimedes (see also section A.1 in appendix), a volume sur-
rounded by a fluid (in our case, the ambient air) generates a buoyant
force that is equal to the mass of the fluid displaced by this volume. In
order to fly, airships are thus lighter than the mass of air occupied by
their hull. They achieve that by filling the big volume of their hull with
a gas that is far lighter than air (helium is often employed) in order to
compensate for the weight of the gondola and equipment that are hang-
ing below the hull. Such a lift principle presents several advantages:

• No specific skills in aerodynamics are needed for building a system
that flies. Inflating a bag with helium and releasing it into the
air with some balancing weight will produce a minimalist flying
platform that just stays airborne like a submarine floats in the
water.

• Unlike helicopters or jet-based systems, it is not dangerous for
indoor use and far more silent.

• Unlike all other flying schemes, it does not consume energy to stay
aloft.

• The envelope size can easily be adapted to the required payload
(e.g., a typical spherical Mylar bag of 1m in diameter filled with
helium can approximately lift 150g of payload in addition to its
own weight).

• An airship is largely stable by nature. Its center of gravity lies
below the center of buoyancy, creating restoring forces that keep
the airship upright (see subsection A.1 in appendix). If used under
reasonable accelerations, an airship can thus be approximated by
a 4 DOF platform because pitch and roll are always close to zero
degrees.
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• Equipped with some protections, a blimp can bump into obstacles
without damage while remaining airborne, which is definitely not
that trivial for airplanes or helicopters.

All these advantages led several research teams to adopt such a kind
of lighter-than-air platform in different areas of indoor robotic control
like visual servoing (Zhang and Ostrowski, 1998; van der Zwaan et al.,
2002; da Silva Metelo and Garcia Campos, 2003), collective intelligence
(Melhuish and Welsby, 2002), or bio-inspired navigation (Planta et al.,
2002; Iida, 2003). The same advantages allowed us to setup the first
evolutionary experiment entirely performed on a physical flying robot
(Zufferey et al., 2002). Note that the version used at that time, the
so-called Blimp1, was slightly different than the one presented below.

Apart from the need for helium refill from time to time, the main
drawbacks of a blimp-like platform reside in its inertia caused by its
considerable volume. Because of its shape and dynamics, a blimp is
also more different from flying insects than an airplane. This plat-
form was mainly built as an intermediate step between the miniature
wheeled robot and the ultra-light winged aircraft to enable aerial ex-
periments that were not possible with the airplane (chapter 6). A blimp
already features much more complex dynamics than a Khepera. In
particular, it has inertia effects, must counteract air drag and side slip
(see appendix A for details).

The Blimp2b

The latest prototype, the so-called Blimp2b (figure 3.2), has a helium-
filled envelope with a lift capacity of 100g. The almost ellipsoid hull
measures 110x60x60cm. The underneath gondola is made of thin car-
bon rods. Attached to the gondola frame are three thrusters (8mm DC
motors, gear and propellers from DidelTM) and two sensors in addition
to camera and gyroscope that will be described in section 3.2 below. An
anemometer made of a free rotating propeller mounted on a shaft with
an optical encoder (developed by DidelTM) allows to measure forward
air-speed. As in the case of the Khepera’s encoders, the anemometer
is only used for performance estimation and not for navigation con-
trol. A vertical distance sensor (SharpTM GP2Y0A02YK) provides an es-
timate of altitude over ground. On-board energy supply is ensured by
a 1200mAh Lithium-polymer battery, which is sufficient for 2-3 hours
of autonomy.
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Front thruster

Anemometer

Yaw thruster

Vertical thruster

Altitude sensor

Battery

Microcontroller board with radio and yaw gyroscope

1D camera

Helium-filled envelope

10cm

Figure 3.2: Autonomous indoor airship Blimp2b with description of all elec-
tronic components, sensors and actuators.

Although Blimp2b can move in 3D, roll and pitch movements are
passively stabilised around the horizontal attitude. Consequently, the
Blimp2b has virtually only 4 DOF. Furthermore, we implemented an
automatic (non vision-based) altitude control using the vertical dis-
tance sensor in order to reduce the manoeuvring space to 2D and the
control requirements to 3 DOF. Even with this simplification, this air-
ship displays much more complex dynamics than the Khepera and no
trivial relation exists between the voltages applied to the motors and
the resulting trajectory. This is due to inertia (not only of the blimp
itself but also of the displaced air in the surroundings of the hull) and
to aerodynamic forces (see appendix A). Therefore, thinking in terms
of control mechanisms according to section 2.4, in addition to obstacle
avoidance (OA), the Blimp2b would require course stabilisation (CS)
in order to be able to gain forward speed without rotating randomly
around its yaw axis. Instead, vision-based altitude control (ALC) is not
needed in the case it is ensured by the vertical distance sensor. Be-
cause of the natural passive stabilisation, active attitude control (ATC)
is not required either.
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3.1.3 Indoor Airplane

In 2001, together with the EPFL spin-off DidelTM, we started the process
of developing ultra-light flying airplanes for indoor robotic research
(Nicoud and Zufferey, 2002). Rotorcrafts and flapping-wing systems
were discarded mainly because of their mechanical complexity, their in-
trinsic instability and the lack of literature about unsteady-state aero-
dynamics especially for small size and low speed (i.e., low Reynolds
number). Our effort was aimed at a simple platform that should be
able to fly in office-like environments, which demand high manoeuvra-
bility and low speed in addition to the need for a small size.

Requirements for Flying Indoor

In order to better appreciate the challenges involved, let us review some
basic concepts of steady-state aerodynamics. First of all, the lift FL and
drag FD forces acting on a wing of surface S going through the air at
velocity v are given by:

FL,D =
1

2
ρv2SCL,D, (3.1)

where ρ is the air density and CL and CD the lift and drag coeffi-
cients. Those coefficients depends on the airfoil geometry, its angle
of attack and the airflow characteristics around it. The airflow (or
any fluid) dynamic characteristics are represented by the dimension-
less Reynolds number Re, which is defined as:

Re =
ρvL

µ
=
ρv2

µv
L

=
inertial forces
viscous forces

, (3.2)

where µ is the air dynamic viscosity and L a characteristic length
of the airfoil (generally the average wing chord, i.e., the distance from
leading edge to trailing edge). Re provides a criterion for dynamic sim-
ilarity of airflows. In other words, two similar objects of possibly dif-
ferent sizes in different fluids with different flowrates will have similar
fluid flow around them if Re is the same in both situations. If the fluid
density and viscosity are constant, the Reynolds number is mainly a
function of airspeed v and wing size L. The Reynolds number also in-
dicates the relative significance of the viscous effect compared to the
inertia effect. Obviously, Re is small for slow-flying, small aerial de-
vices (typically 0.3-5·103 in flying insects, 1-3·104 in indoor slow-flyers),
whereas it is large for standard airplanes flying faster (107 for a Cessna,
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Figure 3.3: Maximum lift-to-drag ratio. Airfoil performance deteriorates
rapidly as the Reynolds number decreases below 105. Adapted from McMas-
ters and Henderson (1980).

up to 108 for a Boeing 747). Therefore, very different airflows should
be expected between a small and slow flyer and a standard aircraft. In
particular, viscous effects are predominant at small size.

The aerodynamic efficiency of an airfoil is defined in terms of the
maximum lift-to-drag ratio (Mueller and DeLaurier, 2001). Unfortu-
nately, this ratio has a general tendency to fall off as the Reynolds
number decreases (figure 3.3). In addition to flying at a regime of bad
aerodynamic efficiency (i.e., low CL and high CD), indoor flying robots
are required to fly at very low speed (typically 1-2m/s), thus further
reducing the available lift force FL produced by the wing (equation 3.1).
For a given payload, the only way of meeting such constraints is to
reach a very low wing-loading ratio (weight to wing surface ratio) by
widening the wing surface. Figure 3.4 shows the place of exception
occupied by indoor flying robots among other aircrafts. It also high-
lights the fundamental difference between indoor airplanes and micro
air vehicles (MAVs) (Mueller, 2001). Although their overall weight is
similar, their respective speed ranges are located on both sides of the
tendency line. As opposed to indoor flying robots, MAVs tend to have
small wings (around 15cm) for ease of packaging and pre-launch han-
dling, and high speed (about 15m/s).

Because of the lack of methods for developing efficient airframe
geometries at Reynolds numbers below 2·105 (Mueller and DeLaurier,
2001), we proceeded by trials and errors. Note that even if methods
for analytical optimisation of airfoil shape were available, it would be
very difficult, if not impossible, to guarantee this shape because of
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Figure 3.4: Aircraft weight versus speed. “R/C models” denotes typical out-
door radio-controlled airplanes. “Indoor” represents the models used by hob-
byists for flying in gymnastic halls. They have less efficiency constraints than
“Indoor flying robots” because they can fly faster. “MAV” stands for micro air
vehicles (as defined by DARPA). Adapted from Nicoud and Zufferey (2002).

the need for using so lightweight materials. Moreover, in such light-
weight systems, the structural parts are so thin that there is always
a lot of distortion, especially when flying. This tends to further widen
the gap between theoretical and actual airframe geometries. Our ap-
proach therefore was rather to concentrate first on feasible airframes
that meet the weight constraints and then improve them on the basis
of flight tests and wind tunnel experiments.

Our indoor airplanes are made of carbon-fiber rods and balsa wood
for the structural part, and of thin plastic film (2.2g/m2) for the lift-
ing surfaces. Details on wing and propeller design as well as motor
selection are given in Nicoud and Zufferey (2002). Tests in wind tun-
nel allowed us to optimize the wing structure and airfoil by measur-
ing lift and drag for different wing geometries under the same airflow
conditions (Zufferey et al., 2001). The measures were obtained with a
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(a) Airflow visualisation

(b) The C4 prototype

Figure 3.5: (a) Airflow visualisation over the airfoil of the C4 (shown below)
using a smoke-laser technique within a special wind tunnel at low air speed.
The prototype is attached to the top of a custom-developed device for measur-
ing very small lift and drag forces. Adapted from Floreano et al. (2005). (b)
Preliminary prototype C4 of the indoor airplane.

custom-developed aerodynamic scale capable of detecting very weak
forces and torques. Furthermore, by employing visualisation tech-
niques (figure 3.5a), we were able to analyze suboptimal airflow con-
ditions and modify the airframe accordingly.

Since 2001, various prototypes have been developed and tested. The
first operational one was the C4 (figure 3.5b). Weighing 47g without
any sensors (see Zufferey et al., 2001, for the weight distribution), this
80cm-wingspan airplane was able to fly between 1.4 and 3m/s with a
turning radius of approximately 2m. The batteries used at that time
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Lithium-polymer battery

Cameras

Microcontroller, gyroscope,
and Bluetooth radio module

2 miniature servos

6mm DC motor with gearbox

Rudder

Elevator

10cm

Figure 3.6: Autonomous indoor airplane F2 with description of all electronic
components, sensors and actuators.

provided an autonomy of a mere 5 minutes.1

The F2

The latest version of our robotic indoor flyers, the model F2 (figure 3.6),
was specifically developed for the experiment of autonomous steering
reported in chapter 5. The F2 has a wingspan of 86cm and an overall
weight of only 30g including two vision sensors and a gyroscope (table
3.1). Thanks to its very low inertia, the F2 is hardly damaged when
crashing into obstacles. This characteristic is mostly appreciated dur-
ing early phases of controller development. In order to further limit the
risk of damaging the aircraft, the walls of the experimental arena used
for this robot are made of fabric (section 3.4).

The F2 flight speed lies between 1.2 and 2.5m/s and its yaw an-
gular rate is in the ±100◦/s range. At 2m/s, the minimum turning
radius is less than 1.3m. The F2 is propelled by a 6mm DC motor
with a gearbox driving a balsa-wood propeller. Two miniature servos

1The realisation of the first prototypes (among which the C4) as well as the wind-
tunnel experiments were carried out together with Cyril Halter and with the help of
Jean-Daniel Nicoud for the realisation of the aerodynamic scale.
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Fuselage and tail : 4.7g
Wing : 4.5g

Landing gear : 1.2g
Motor, gearbox, propeller : 2.7g

Two servos : 2.7g
Battery : 6.9g

Microcontroller board with gyroscope : 3.0g
Two 1D cameras with optics : 2.0g

Bluetooth radio module : 1.0g
Miscellaneous (cables, glue) : 1.3g

Total : 30g

Table 3.1: Weight distribution of the F2.

(GD-servo from DidelTM) are placed at the back end of the fuselage
to control the rudder and elevator. On-board energy is provided by
a 310mAh Lithium-polymer battery. The power consumption of the
electronics (including wireless communication, see subsection 3.2.3)
is about 300mW, whereas overall peak consumption reaches 2W. The
energetic autonomy in flight is around 30 minutes.

In order to provide this airplane with good passive stability around
roll and pitch angles, the wing is positioned rather high with respect
to the center of gravity and the tail is located relatively far behind the
wing. In addition, some dihedral2 naturally appears in flight because of
the distortion of the longitudinal carbon rods holding the wings. This
effect also contributes to passive roll stability. As a results, no active
attitude control (ATC) is actually needed in order for the F2 to stays up-
right in flight. Course stabilisation (CS) can be useful to counteract air
turbulences and the effects of airframe asymmetries. Obstacle avoid-
ance (OA) is the central issue of chapter 5, whereas altitude control
(ALC) has not yet been tested on this airplane.

3.1.4 Comparative Summary of Robotic Platforms

Table 3.2 provides an overview of the three robotic platforms described
above. The first part of the table summarises their main character-
istics. The second part is about electronics and sensors that will be

2Dihedral is the upward angle of an aircraft’s wings from root to tip, as viewed from
directly in front of or behind the aircraft. The purpose of dihedral is to confer stability
in the roll axis. When an aircraft with dihedral is yawing to the left, the dihedral
causes the left wing to experience a greater angle of attack, which increases lift. This
increased lift tends to cause the aircraft to then return to level flight.
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Khepera with
kevopic

Indoor airship
(Blimp2b)

Indoor airplane
(F2)

Type
Terrestrial,

wheeled
Aerial, buoyant

Aerial,
fixed-wings

Degrees of freedom (DOF) 3 4 6

Actuators 2 wheels 3 propellers
1 propeller + 2

servos
Weight [g] 120 180 30

Speed range [m/s] 0 to 0.2 0 to 1 1.2 to 2.5

Typical arena size [m] 0.6 x 0.6 5 x 5 16 x 16

Typical power consump-
tion [W]

4 1 1.5

Power supply cable battery battery

Energetic autonomy – 2-3 hours 15-30 minutes

Microcontroller board kevopic bevopic pevopic

Vision sensor 1x 1x 2x

Yaw gyroscope 1x 1x 1x

Additional sensors (not
used by the navigation
controller)

wheel encoders,
8 proximity

sensors

anemometer,
vertical range

finder
–

Control mechanisms the-
oretically required for au-
tonomous operation

OA CS, OA, (ALC) CS, OA, ALC

Hand-crafted control
mechanisms (chapter 5)

OA, ALC (as
wall following)

– CS, OA

Support evolutionary ex-
periments (chapter 6)

yes yes no

Table 3.2: Characteristics of the three robotic platforms

described in the next section. The last lines anticipate the two main
chapters of this dissertation by summarising which control mecha-
nisms (section 2.4) will be tested on which robot in chapter 5 and which
robots can be and will be engaged in evolutionary experiments in chap-
ter 6.

Note that this set of three platforms feature increasing dynamic
complexity, speed range, and degrees of freedom. This allows to as-
sess control strategies and methodologies with an incremental degree
of complexity (Zufferey et al., 2003).
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3.2 Unified Embedded Electronics

The electronic equipment of the different robots was conceived to fa-
cilitate the transfer of technology and software from one platform to
another. In this section, we present the microcontroller boards, the
sensors, and the communication systems equipping the three robotic
platforms.

3.2.1 Microcontroller Boards

We developed three similar microcontroller boards (figure 3.7) for each
of the three platforms. They can be programmed using the same tools
and software modules can easily be exchanged. A common aspect of
these boards is that they are all based on a MicrochipTM 8-bit micro-
controller. The PIC18F6720 microcontroller has been selected as the
core processor for different reasons. First it consumes only 30-40mW
when running at 20MHz. Then, it also supports low voltage (3V) power
supply, which is compatible with one Lithium-polymer cell (3.7V nom-
inal). It is available in very small packaging (12x12x1mm, Thin Quad
Flat Package) and has therefore a minimal weight (less than 0.3g). Fur-
thermore, it features a number of integrated hardware peripherals like,
e.g., USART (Universal Synchronous Asynchronous Receiver Transmit-
ter), MSSP (Master Synchronous Serial Port, in particular I2C), and
ADCs (Analog to Digital Converters) allowing different types of inter-
faces with the robot sensors and actuators. The microcontroller can
be programmed in assembler as well as in C-language (using, e.g., the
CCSTM PICC compiler), which enhances the code readability, portabil-
ity, and modularity.

Obviously, the advantages such as low power consumption and
small size come at the expense of other features. The PIC18F6720
has a reduced instruction set (e.g., 8-bit addition, multiplication, but
no division), does not support floating point arithmetic, and features
limited memory (3840 bytes of RAM, 64k words of program memory).
However, in our approach to controlling indoor flying robots, the lim-
ited available processing power is taken as a typical constraint of such
platforms. Therefore, the majority of navigation experiments, at least
in their final stage, are performed with embedded software in order
to demonstrate the adequacy of the proposed control strategies with
autonomous indoor flying robots.

The microcontroller board for the Khepera, the so-called kevopic,
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(a) kevopic (top) (b) bevopic (top) (c) pevopic

top

bottom

1cm

microcontroller

Bluetooth gyroscope

Figure 3.7: Microcontroller boards (a) kevopic (for the Khepera), (b) bevopic (for
the blimp) and (c) pevopic (for the plane). The microcontroller of the bevopic is
on the bottom side of the board (not visible in the picture). The BluetoothTM

module with its ceramic antenna (beige rectangle) is shown only on bevopic,
but is also used with pevopic. Also visible on the pevopic is the gyroscope
(subsection 3.2.2).

is not directly connected to some of the robots peripherals (motors,
wheel encoders, and proximity sensors), but uses the underlying Khep-
era module as a slave. Kevopic has only a serial communication link
with the underlying Khepera, which is only employed for sending mo-
tor commands, reading wheel speeds and proximity sensors. The vi-
sual and gyroscopic sensors, instead, are directly connected to kevopic,
avoiding the transfer of vision stream via the Khepera main processor.

The architecture is slightly different for the two next boards for the
flying robots because they are directly interfaced with both the sensors
and actuators. In addition to the PIC microcontroller, bevopic (blimp,
evolution, PIC) features three motor drivers and plenty of extension
connectors, including one for the vision sensor, one for the gyroscope,
and one for the other sensors and actuators. It is slightly smaller and
far lighter than kevopic (4.4g instead of 14g). It also features a connec-
tor for a BluetoothTM radio module (subsection 3.2.3).

The latest rendition of the microcontroller board for the F2 airplane,
pevopic, is largely similar to bevopic, although it features lower weight
and smaller size. Pevopic weighs only 4g, including the wireless mod-
ule, and is twice as small as bevopic (figure 3.7). This was possible
because the plane does not require bidirectional motor drivers. A sim-
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ple transistor is sufficient for the main motor (servos for rudder and
elevator have their own motor drivers). Unlike bevopic, pevopic has the
gyroscope directly onboard in order to spare the weight of the connec-
tion wires and additional electronic board.

3.2.2 Sensors

As in flies, vision and gyroscope are the core sensory modalities of our
robots. Fortunately, it was possible to use the same vision chip and
the same gyroscope on all three robotic platforms. Modifications were
only required on optics and packaging in order to meet the different
constraints of the robotic platforms.

Camera and Optics

The selection of a suitable vision system that should be able to provide
enough information about the surrounding world for autonomous nav-
igation while fitting the drastic weight constraints of a 30-gram flying
robot (on which only 2-3 grams are left for visual sensors) is not a triv-
ial task. On the one hand, it is well known that global motion fields
spanning wide field of view (FOV) are easier to interpret (Nelson and
Aloimonos, 1988) and indeed most flying insects have almost omnidi-
rectional vision (subsection 2.3.3). On the other hand, artificial vision
systems with wide FOV are likely to be too heavy because they need ei-
ther a special mirror or fish-eye optics with multiple glass-lenses. Such
subsystems are also likely to require much, if not too much, processing
power from the onboard microcontroller.

Therefore, we decided to use simple, low-resolution, and lightweight
1D cameras (also called linear cameras) with lightweight plastic lenses
pointing at relevant directions according to the behaviour (see chapter
5). 1D cameras also present the advantage of having few pixels, hence
keeping the computational and memory requirements within the limits
of a simple microcontroller. The 1D camera we selected for the exper-
iments reported in this dissertation is the Taos Inc. TSL3301 (figure
3.8). It features a linear array of 102 grey-level pixels, out of which
only 50 pixels in the middle are exposed to light by the lens.

Before deciding in favour of this 1D camera, we tested other
small and lightweight CMOS3 sensors (Zufferey et al., 2003). Among

3A major advantage of CMOS (Complementary Metal Oxide Semiconductor) over
CCD (Charge Coupled Device) technology is the ability to integrate additional cir-
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Figure 3.8: Vision chip (bottom-left), optics (top) and camera packaging (bot-
tom center and right). Marshall and EL-20 optics are interchangeable in the
camera for kevopic. In an effort of miniaturisation, the TSL3301 has been
machined such to fit the small custom-developed package labelled “Camera
for the F2”, whose overall size is only 10x10x8mm. The 8 pins of the TSL3301
have been removed and the chip has been directly soldered on the underlying
printed circuit board. The EL-20 core plastic lens has been extracted from its
original packaging and placed into a smaller one (top-right). The weight gain
is fivefold (a camera for kevopic with an EL-20 weighs 4g).

them was an interesting 2D camera module, named OV7645FB,
from OmnivisionTM. This module would have been sufficiently small
(10x9x7mm) and lightweight (0.7g) to be mounted on the F2. The core
chip is a VGA color camera, in which acquisition can be restricted to
a sub-region of the whole image (windowing). An 8-bit parallel bus is
used to transfer pixel values while a serial port allows for adjustment
of camera parameters such as brightness, contrast, gain, windowing,
etc. Despite the remarkable capabilities of this camera module, the
OV7645FB tends to output too many data (more than 300’000 pix-
els) for the microcontroller (whose data memory has only 3840 bytes).

cuitry on the same die as the sensor itself. This makes it possible to integrate analog
to digital converters or other functionalities like windowing. Furthermore, CMOS
imagers offer lower power dissipation, and smaller system size than CCD sensors.
These advantages are at the expense of image quality but this criterion is of minor
importance in our case, especially in comparison with the coarse resolution of insects
eyes.
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Linear camera

Yaw gyroscope

(a) Khepera with custom turret

Right FOV Left FOV

(b) F2 flying robot

Figure 3.9: Camera position and orientation on the robots (the blimp case is
not shown). (a) On the Khepera, the camera can be oriented either forward or
laterally with 70◦ or 130◦ FOV depending on the optics (on this picture, the
Marshall 120◦ lens is mounted). (b) Top view of the F2; camera orientations
are indicated in white dashed lines.

Although a large part of those pixels could be ignored if only low reso-
lution images are acquired, the camera still needs to scan every pixel
internally. Therefore, it is very difficult to obtain high frame rates while
maintaining a sufficiently slow pixel clock for the microcontroller to be
able to read and store the pixels arriving on its parallel port. The max-
imum possible frame rate compatible with the PIC was 12.5Hz, which
is quite slow when compared to the 300Hz of the fly’s eye (see subsec-
tion 2.2.1). This slow frame rate would precludes optic-flow algorithms
to provide precise information. For sake of comparison, the maximal
frame rate of the TSL3301 is around 1kHz.

Optics and Camera Orientations

In order to focus the light onto the TSL3301 pixel array, we use two
different optics (figure 3.8). The first one, a Marshall-ElectronicsTM

V-4301.9-2.0FT, has a very short focal length of 1.9mm providing an
ultra-large FOV of about 120◦ at the expense of a relatively large weight
of 5g. The second one, an Applied-Image-groupTM EL-20, has a focal
length of 3.4mm and a FOV of approximately 70◦. The advantages of
the EL-20 are its relatively low weight (1g) due to its single plastic lens
system and the fact that it could be machined in order to extract the
core lens and remount it in a miniaturised lens-holder weighing only
0.2g (figure 3.8, top-right). Both optics provide an interpixel angle (1.4-
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2.6◦) comparable to the interommatidial angle in flying insects (1-5◦,
see subsection 2.2.1).

In all experiments reported in this thesis, the TSL3301 line of pixels
is oriented horizontally. On the Khepera, the camera can be oriented
either forward or laterally by adding a small adapter (figure 3.9). On
the Blimp2b, the camera is mounted at the front end of the gondola
and oriented forward (figure 3.2). For the experiment of chapter 5, the
F2 airplane needs a large FOV, but the weight of a Marshall lens is pro-
hibitive. In fact, the Khepera and the Blimp2b support both types of
lenses, whereas the F2 is equipped with two miniaturised camera mod-
ules each oriented at 45◦ off the longitudinal axis of the plane (figure
3.9), and featuring the EL-20 core lens. Two miniature cameras with
custom packaging are indeed 10 times lighter than a single one with a
Marshall lens (figure 3.8).

Gyroscope

Looking for a very small and lightweight gyroscope with minimum
external components, we found the Analog-DevicesTM ADXRS (figure
3.10), which is an affordable, self-contained MEMS (Micro-Electro-
Mechanical Systems) gyroscope. It is mounted on a ball-grid array
package, 7mm square and 3mm thick. It consumes only 25mW but
requires a small step-up converter to supply it with 5V (instead of 3.3V
for the rest of the on-board electronics).

Very much like the halteres of the flies (subsection 2.2.2), such
piezoelectric gyroscopes use the Coriolis effect on vibrating elements
to sense the speed of rotation. The ADXRS150 can sense angular ve-
locity up to 150◦/s. Taking into account the analog to digital conver-
sion done in the microcontroller, the resolution of the system is slightly
better than 1◦/s over the whole range. Each of our three robots are
equipped with one gyroscope to measure yaw rotation. The one on the
Khepera is visible in figure 3.9. The one on the Blimp2b is shown in
figure 3.2. The one for the F2 is directly mounted on the pevopic board
and shown in figure 3.7.

3.2.3 Communication

It is crucial to have a communication link supporting bidirectional data
transfer in real-time, in order to monitor the robot’s internal state dur-
ing experiments. In this respect, the Khepera is very practical be-
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Figure 3.10: The ADXRS piezoelectric gyroscope. The package is 7mm square
and 3mm thick and weighs 0.4g.

cause it can easily be connected to the serial port of a workstation with
wires through a rotating contact module (as shown in figure 3.12a). Of
course, this is not possible with the aerial versions of our robots. To
meet the communication requirements, we opted for a Bluetooth4 wire-
less solution. Commercially available Bluetooth radio modules can be
connected directly on an RS232 serial port. We developed basic drivers
for the PIC and the PC allowing to communicate with such Bluetooth
modules at the HCI level (Host Controller Interface). This level does not
provides full compatibility with commercially available Bluetooth USB
devices, but bypasses higher level protocol stacks so that overheads
and delays are kept to a minimum.

The selected Bluetooth module, a MitsumiTM WML-C10-AHR (shown
on the bevopic board in figure 3.7), has a built-in ceramic antenna for
an overall weight of only 1g. It is a class 2 module, meaning that the
communication range is guaranteed up to 10m, but in practice dis-
tances up to 25m in indoor environments are not a problem with that
particular module. The power consumption is 100 to 150mW during
transmission.

The advantages of using Bluetooth technology are twofold. First, in
the long run we benefit from the continuous efforts toward low power
and small modules. Second, Bluetooth modules have several built-in
mechanisms against electromagnetic noise, such as frequency hopping
and automatic packet retransmission on errors. Therefore, the host mi-
crocontroller does not need to worry about encoding or error detection
and recovery.

To communicate with the robots, we use a simple packet-based
communication protocol. The packets can be encapsulated into HCI5

packet when using Bluetooth or simply sent over an RS232 channel

4http://www.bluetooth.org
5Host-Controller Interface
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when working with a cable. Bevopic and pevopic have indeed a con-
nector supporting either a RS232 cable or a Bluetooth module. When
Bluetooth is used, the PIC controls the module via the same serial port.
Note that a packet-based protocol is also very convenient for TCP/IP
communication, which we employ when working with simulated robots
(subsection 3.3.2).

3.3 Software Tools

This section briefly discusses the two main software tools that are used
for the experiments of chapters 5 and 6. The first one is a robot inter-
face and artificial evolution manager used for fast prototyping of control
strategies and for evolutionary experiments. The second software is a
robot simulator that is mainly used for the Blimp2b.

3.3.1 Robot Interface

The software goevo6 is a robot interface written in C++ with the wxWid-
gets7 framework, to ensure multi operating systems compatibility. Go-
evo implements the simple packet-based protocol (subsection 3.2.3)
over different kinds of communication channels (RS232, Bluetooth,
TCP/IP) in order to receive and send data from/to the robots. It can
display sensor data in real-time and log them into text files that can
be further analysed with a mathematical software. It is also very con-
venient for early stage assessment of sensory-motor loops since con-
trol schemes can be easily implemented and assessed on a worksta-
tion (which communicates with the real robot at every sensory-motor
cycle) before being compiled into the microcontroller firmware for au-
tonomous operation.

Goevo can also be used to evolve neural circuits for controlling real
or simulated robots. It features built-in neural networks and an evolu-
tionary algorithm (chapter 6). We do not describe this software in more
details here because it has been collectively developed and is available
online in open-source format.

6goevo website: http://lis.epfl.ch/resources/evo
7wxWidgets website: http://wxwidgets.org/
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3.3.2 Robot Simulator

A robot simulator is also used to ease the development of control strate-
gies before validating them in reality. This is particularly useful with
evolutionary techniques (chapter 6) that are known to be time consum-
ing when performed in reality and potentially destructive for the robots.

As a framework for simulating our robots, we employ WebotsTM

(Michel, 2004), which is a convenient tool for creating and running mo-
bile robot simulations in 3D environments (using OpenGL) with a num-
ber of built-in sensors like cameras, gyroscopes, bumpers, range find-
ers, etc. Webots also features rigid-body dynamics (based on ODE8).
The dynamics engine provides libraries for kinematic transformations,
collision handling, friction and bouncing forces, etc. Goevo can com-
municate with a robot simulated in Webots via a TCP/IP connection,
using the same packet-based protocol as employed with the real ro-
bots.

The Khepera robot with its wheel encoders and proximity sensors
is readily available in the basic version of Webots. For our purpose,
it has been augmented with a 1D vision sensor and a gyroscope to
emulate the functionality provided by kevopic. The experimental arena
is easy to reconstruct using the same textures as employed to print the
wallpaper of the real arena.

Webots does not yet support non-rigid-body effects such as aerody-
namic or added-mass effects. In order to ensure realistic simulation
of the Blimp2b, we added the dynamic model presented in Appendix A
as a custom dynamics of the simulated robot, while leaving it to We-
bots to handle friction with walls and bouncing forces when necessary.
The custom dynamics implementation takes current velocities and ac-
celerations as input and provides force vectors that are passed to We-
bots, which computes the resulting new state after a simulation step.
Figure 3.12d illustrates the Blimp2b in its simulated environment in
Webots. The simulated Blimp2b features the same set of sensors as
its real counterpart (figure 3.11). Those sensors are modeled using
data recorded from the physical robot. Noise level and noise envelope
were reproduced in the simulated sensors so to match as closely as
possible the real data. In addition to the sensors existing on the physi-
cal Blimp2b, virtual sensors9 can easily be implemented in simulation.

8Open Dynamics Engine website: http://opende.sourceforge.net
9We call “virtual sensors” the ones that are only implemented in simulation, but

do not exist on the real blimp.
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Front thruster

Anemometer

Yaw thruster

Vertical thruster

Altitude sensor Microcontroller board with radio and yaw gyroscope

1D camera

8 virtual proximity
sensors

Figure 3.11: Side view of the simulated Blimp2b. The dotted thick arrows
indicate the direction and range of the virtual proximity sensors.

In particular, for the need of experiments performed in chapter 6, the
simulated Blimp2b is provided with 8 proximity sensors distributed all
around the envelope (figure 3.11).

A preliminary dynamic model of the F2 has been developed
(Guanella, 2004) but its accuracy has not yet been thoroughly mea-
sured. Therefore, experiments with the simulated airplane are not cov-
ered in this dissertation.

The simulation rate obtained with all sensors enabled and full
physics (built-in and custom) is 40 to 50 times faster than real-time
when running on a current PC (e.g., Intel(R) Pentium IV at 2.5GHz
with 512MB RAM and nVidia(R) GeForce4 graphic accelerator). This
rate allows to significantly accelerate long-lasting experiments such as
evolutionary runs.

3.4 Experimental Environments

Since this thesis is focused on simple, vision-based navigation strate-
gies, the geometry of the experimental arenas is deliberately kept as
simple as possible (figure 3.12). The square textured arenas are
inspired by the environments that are used in biology for studying
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(a) Khepera arena (b) With another pattern

(c) Real blimp arena (d) Simulated blimp arena

(e) Airplane arena

Figure 3.12: Experimental environments. (a) The Khepera arena is 60x60cm
with 30cm high walls featuring randomly arranged black and white patterns.
(b) The same square arena for the Khepera with another kind of random pat-
tern on walls. (c) The blimp arena measures 5x5m and has the same kind of
random black and white stripes painted on the walls. (d) The same arena but
in simulation. The patterns in the simulator are exactly reproduced from the
real ones that have been painted on the walls. (e) The larger test arena for
the 30-gram indoor airplane. This one is 16x16m large and delimited by soft
walls made of fabric. Note that the regularity of the pattern is due to the size
of the material from the store, but is not required by the aircraft.
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visually-guided behaviours of insects (see, e.g., Egelhaaf and Borst,
1993a; Srinivasan et al., 1996; Tammero and Dickinson, 2001, or fig-
ure 2.7). Although in biological experiments arenas are often cylindri-
cal rather than square, the simplicity of shape and texture facilitates
the understanding of the principles underlying insects’ behaviour and
development of the robot control systems.

A constraint specific to our incremental approach using different
types of robots is also to have similar environments with different sizes
adapted to each platform’s velocity and dynamics. Available infrastruc-
ture has also to be taken into account in this choice, since it could be
difficult to find convenient rooms in the vicinity of the laboratory. Tak-
ing care of those constraints, we decided to go for square rooms, whose
dimensions are roughly adapted to the size and manoeuvrability of the
robots. The Khepera has a small desktop arena of 60x60cm, the blimp
manoeuvres in a room measuring 5x5m (3m high), and the indoor air-
plane flies in a 16x16m arena delimited by fabric walls.

In order to provide robots with visual contrast, the walls of those
arenas are equipped with random black and white patterns. The ran-
dom distribution and size of the stripes is intended to make sure that
no trivial geometrical solutions to depth perception could be used by
the robots to navigate. The same kind of random distribution was too
expensive to obtain in the wide arena for the airplane (figure 3.12e)
because fabric size was standard and we could not spend time to cut
and reassemble the pieces of fabric. However, even with this almost
homogeneously distributed patterns, the robot does not rely on static
geometry to navigate in this room (chapter 5).

The kind of walls and the way patterns are applied on them de-
pends on the type of experiments and robot characteristics. The Khep-
era arena has been made such as to be easily covered with different
wallpapers (e.g., figure 3.12b). In this case, the patterns are directly
printed on paper sheets and glued on the walls. It was impossible to
apply the same technique for the blimp because of the greater dimen-
sions of the room. Therefore, the black stripes were directly painted
over white walls. Finally, the airplane arena is made of soft walls not
only because they are easily mounted and dismounted, but also be-
cause they absorb energy if a crash occurs during development.
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3.5 Summary and Discussion

In this chapter, we presented the robotic platforms that are used for
vision-based navigation experiments together with the tools and ex-
perimental arenas. The Khepera with kevopic is the simplest from a
dynamic and operational perspective because it moves on a flat sur-
face and in a limited space, and can be wired to a computer without
affecting its dynamics. Therefore, it is used for preliminary assessment
of control strategies. However, this wheeled platform does not capture
the complex dynamics of flying robots. In this thesis, the targeted plat-
form is the F2 airplane because it features the lightest weight and has
a dynamics, which is the closest to a flying insect.10 This robot is thus
used in chapter 5 to demonstrate autonomous, optic-flow-based aer-
ial steering. Looking for alternative, vision-based navigation strategies,
chapter 6 relies on an evolutionary techniques, which presents sev-
eral difficulties for a robot as the F2. Therefore, we took the strategic
decision to tackle this experimental approach with a more convenient
testbed before extending it to winged platforms (not yet achieved). To
that end, we developed the Blimp2b, which can fly more easily than the
F2 and is able to withstand chocks without damage. It also has a sim-
pler dynamic model than a plane because critical situations such as
stall or aerobatic manoeuvres do not occur with airships. Therefore an
accurate simulation of a blimp is simpler to obtain and has been suc-
cessfully developed and integrated in our robotic simulator (WebotsTM).
As a side effect, the hovering and backward flying capabilities of the
blimp allows to investigate behaviours that could be reused on other
hovering platforms such as helicopters.

Obviously, the two aerial platforms do not attempt to reproduce the
bio-mechanical principles of insect flight. The choice of using non-
biomorphic platforms is also strategic. Although flapping-wings (with
even smaller size, see subsection 1.2.1) are likely to provide a good
solution for flying within cluttered environments, their aerodynam-
ics of flight is so complex (and not yet fully understood) so that the
project would have focused primarily on mechanical and aerodynamics
aspects, at the expense of the control strategies. In the near future,
there is still lots of work to do on the control side of indoor flying ro-
bots, using more classical airplane configurations. As an example, the
latest remote-controlled model from DidelTM, the so-called miniCeline,

10For instance, its velocity is in the same range as most Diptera, i.e., around 1-3m/s
(Dudley, 2000, p.76).
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reaches an autonomy of 15 minutes with a 60mAh Lithium-polymer
battery. It weighs only 7g and features a minimum airspeed of less
than 1m/s for a wingspan of 42cm. Such a low flight speed allows
for manoeuvring in cluttered office-like environments, for flying along
corridors and even through doors.





Chapter 4

Optic Flow

The real voyage of discovery lies not in seeking new land-
scapes, but in having new eyes.

M. Proust (1871-1922)

Abstract

The main sensory cue in flight control of insects seems to be visual
motion (chapter 2), also called optic flow (OF). In this chapter we de-
fine it more precisely. The formal description of OF will enable to plot
the global motion fields generated by particular movements and sur-
rounding structures in order to analyse them and develop the control
strategies presented in the next chapter. In practice, lightweight robots
cannot afford for high-resolution, omnidirectional cameras and com-
putationally intensive algorithms. OF has to be estimated with limited
resources in terms of processing power and vision sensors (see section
3.2). In the second part of this chapter, we thus describe an algorithm
for OF detection that meets the constraints imposed by the embedded
8-bit microcontroller. Combined with the 1D camera, this algorithm
results in what we call an optic flow detector (OFD).1 This OFD is ca-
pable of measuring in real-time image motion along one direction in
a selectable part of field of view. Several of those OFDs spanning one
or more cameras will be implemented on the robots to serve as image
preprocessing for navigation control.

1Here we use OFD instead of EMD in order to highlight the significant differences
that will be further described in subsection 4.2.1.
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4.1 What is Optic Flow?

Optic flow is the perceived visual motion of objects as the observer
moves relative to them. It is generally very useful for navigation be-
cause it contains information about self-motion and 3D structure of
the environment. The fact that visual perception of changes represents
a rich source of information about the world has been widely spread
by Gibson (1950). In this thesis, we assume a stationary environment,
so that the optic flow is always solely generated by self-motion of the
observer.

4.1.1 Motion Field and Optic Flow

In general, a difference has to be made between motion field (some-
times also called velocity field) and optic flow (or optical flow). The mo-
tion field is the 2D projection onto a retina of the relative 3D motion of
scene points. It is thus a purely geometrical concept, which has noth-
ing to do with image intensities. On the other hand, the optic flow is
defined as the apparent motion of the image intensities (or brightness
patterns). Ideally, the optic flow will correspond to the motion field, but
this needs not always be the case (Horn, 1986). The principal reasons
for discrepancies between optic flow and motion field are the possible
absence of brightness gradients or the aperture problem2.

In this thesis, however, we deliberately confound this two notions.
In fact, there is no need, from a behavioural perspective, to rely on the
ideal motion field. It is sufficient to know that the perceived optic flow
tends to follow the motion field’s main characteristics (such as increase
when closing in on objects). This is very likely to be the case in our
experimental environments where a lot of visual contrast is available
(section 3.4). Moreover, spatial and temporal averaging is used (as in
biological systems) to smooth out perturbations arising in small parts
of the visual field where no image patterns would be present for a short
period of time.

In addition, there is always a difference between the actual optic
flow arising on the retina and the one a specific algorithm will mea-
sure. However our simple robots are not intended to retrieve metric
information about the surrounding world, but rather use qualitative

2If the motion of an oriented element is detected by a unit that has a small FOV
compared to the size of the moving element, the only information that can be ex-
tracted is the component of the motion perpendicular to the local orientation of the
element (Marr, 1982, p.165, Mallot, 2000, p.182).
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properties of optic flow to navigate. Relying on rough optic flow values
for achieving efficient behaviours rather than trying to estimate accu-
rate distances is indeed what flying insects are believed to do (Srini-
vasan et al., 2000). There is also good evidence that flies do not solve
the aperture problem, at least at the level of the tangential cells (Borst
et al., 1993).

In section 5.1, we shall use the formal description of the motion field
in order to build ideal optic flow fields arising in particular flight situa-
tions and draw conclusions about the typical flow patterns that can be
used for implementing basic control strategies like obstacle avoidance
(OA) and altitude control (ALC). Since unlike the eyes of flying insects,
the cameras of our robots have limited FOV (subsection 3.2.2), this
qualitative study also provides a basis for deciding in which directions
the cameras (and thus the OFDs) should be oriented.

4.1.2 Formal Description and Properties

Here we discuss the formal definition of optic flow (as if it were identical
to the motion field) and highlight interesting properties.

A vision sensor moving within a 3D environment ideally produces
a time-varying image which can be characterised by a 2D vector field
of local velocities. This motion field describes the 2D projection of the
3D motion of scene points relative to the vision sensor. In general, the
motion field depends on the motion of the vision sensor, the structure
of the environment (distances from objects), and the motion of objects
in the environment, which we assume to be null in our case (stationary
environment).

For the sake of simplicity, we consider a spherical visual sensor of
unit radius3 (figure 4.1). The image is formed by spherical projection
of the environment onto this sphere. Apart from resembling the case of
a fly’s eye, the use of a spherical projection makes all points in the im-
age geometrically equivalent, which simplifies the mathematical analy-
sis4. We thus assume that the photoreceptors of the vision sensor are
arranged on this unit sphere, each of them defining a viewing direction
indicated by the unit vector d(Ψ,Θ), which is a function of azimuth Ψ

and elevation Θ. The 3D motion of this vision sensor or of its support-

3A unit radius allows to normalise the OF vectors on its surface and to express
their amplitude directly in [rad/s].

4Ordinary cameras do not use spherical projection. However, if the FOV is not too
wide, this approximation is reasonably close (Nelson and Aloimonos, 1989). A direct
model for planar retinas can be found in Fermüller and Aloimonos (1997).
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Figure 4.1: Spherical model of a visual sensor. A viewing direction indicated
by the unit vector d, which is a function of azimuth Ψ and elevation Θ. The
distance from an object in the direction d(Ψ,Θ) is denoted D(Ψ,Θ). The optic
flow vectors p(Ψ,Θ) are always tangential to the sphere surface. The vectors T
and R represent the translation and rotation of the visual sensor with respect
to its environment.

ing body is characterised unambiguously by a translation vector T and
a rotation vector R (describing the axis of rotation and its amplitude)5.
When the vision sensor is moving in its environment, the motion field
p(Ψ,Θ) is given by (Koenderink and van Doorn, 1987):

p(Ψ,Θ) =

[
−T− (T · d(Ψ,Θ))d(Ψ,Θ)

D(Ψ,Θ)

]
+ [−R× d(Ψ,Θ)] , (4.1)

where D(ψ, θ) is the distance between the sensor and the object seen
in direction d(Ψ,Θ). Although p(Ψ,Θ) is a 3D vector field, it is by con-
struction tangential to the spherical sensor surface. Optic flow fields
are thus generally represented by unfolding the spherical surface into
a Mercator map (figure 4.2). Positions in the 2D space of such maps
are also defined by the angles of azimuth Ψ and elevation Θ.

Given a particular self-motion T and R and a specific repartition
of distances D(Ψ,Θ) from surrounding objects, equation (4.1) allows to
reconstruct the resulting theoretical optic flow field. Beyond that, it
formally supports a fact that was already suggested in chapter 2, i.e.,
the optic flow is a linear combination of the translatory and rotatory

5In the case of an aircraft, T is a combination of thrust, slip, and lift, and R a
combination of roll, pitch, and yaw.



4.1. What is Optic Flow? 79

T

R

(a) Vertical translation

(b) Roll rotation

el
ev

at
io

n 
Θ

azimuth Ψ

azimuth Ψ

el
ev

at
io

n 
Θ

Figure 4.2: Optic flow fields due to (a) an upward translation and (b) a ro-
tation around the roll axis. Projection of the 3D relative motion on spherical
visual sensors (left) and development of the sphere surface into Mercator maps
(right). The thick gray line highlights the equator of the spherical visual sen-
sor, whereas the encircled “f” indicates the forward direction. See figure 4.1
for the definition of Ψ and Θ angles. Adapted from Krapp and Hengstenberg
(1996).

components6 induced by the respective motion along T and around R.
The first component, hereafter denoted TransOF , is due to translation
and depends on the distance distribution, while the second component,
RotOF , is produced by rotation and is totally independent of distances
(figure 4.3).

From equation (4.1) we see that the TransOF amplitude is inversely
proportional to distances D(Ψ,Θ). Therefore, if the translation is known
and the rotation is null, it is in principle possible to estimate distances
from surrounding objects. In free-manoeuvring agents, however, the
rotatory and translatory optic flow components are linearly superim-

6The local flow vectors in translatory OF fields are oriented along meridians con-
necting the focus of expansion (FOE, i.e., the direction point in which the translation
is pointing at) with the focus of contraction (FOC, which is the opposite pole of the
flow field). A general feature of the RotOF structure is that all local vectors are aligned
along parallel circles centered around the axis of rotation.
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Figure 4.3: OF fields showing the effect of the superposition of TransOF and
RotOF. The hypothetical camera is oriented toward a fronto-parallel plane.
The first OF field is due to forward translation whereas the second one results
from yaw rotation.

posed and may result in rather complex optic flow fields. It is quite
common that RotOF overwhelms TransOF, thus making estimation of
distance quite difficult. This is probably the reason why flies tend to fly
straight and actively compensate for unwanted rotations (subsection
2.4.3). Another way of compensating for the spurious RotOF signals
would consist in deducing it from the global flow field by measuring
the current rotation with another sensory modality such as a gyro-
scope. Although this solution has not been shown to exist in insects,
it will be adopted in our robots to compensate, in some sense, for the
absence of active gaze stabilisation mechanisms.

4.1.3 Motion Parallax

A particular case of the general equation of optic flow (4.1) is often
used in biology (Sobel, 1990; Horridge, 1977) and robotics (Frances-
chini et al., 1992; Sobey, 1994; Weber et al., 1997; Lichtensteiger and
Eggenberger, 1999) to explain depth perception from optic flow. The
so-called motion parallax refers to a planar situation where only pure
translatory motion is assumed (figure 4.4). In this case, it is trivial7

to express the optic flow amplitude p (also referred to as the apparent
angular velocity) provoked by an object at distance D, seen under an
azimuth Ψ:

7To derive the motion parallax equation (4.2) from the general optic flow equation
(4.1), the rotatory component has first to be cancelled since no rotation occurs and
then the translation vector T needs to be expressed in the orthogonal basis formed
by d (the viewing direction) and p

‖p‖ (the normalised optic flow vector).
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Figure 4.4: Motion parallax. The circle represents the retina of a moving
observer and the symbols are defined in figure 4.1.

p(Ψ) =
‖T‖
D(Ψ)

sin Ψ, where p = ‖p‖ . (4.2)

The formula has been first derived by Whiteside and Samuel (1970)
in a brief paper about the blur zone that surrounds an aircraft flying
at low altitude and high speed. If the translatory velocity and the optic
flow amplitude are known, the distance from the object can thus be
retrieved as follows:

D(Ψ) =
‖T‖
p(Ψ)

sin Ψ. (4.3)

The motion parallax equation (4.2) is interesting in the sense that it
gives a good intuition of how the optic flow varies on the retina.

4.2 Optic Flow Detection

Whereas the previous section gives an overview of ideal optic flow fields,
here we are looking for an optic flow algorithm that will eventually lead
to an implementation on the available hardware.

4.2.1 Issues with Elementary Motion Detectors

Within our bio-inspired approach, the most natural method for detect-
ing optic flow would have been to use correlation-type EMDs8 (sub-

8In fact, we started with a simple, discrete, correlation-type EMD implementation
(after Iida and Lambrinos, 2000) and realised that it is indeed possible to have several
of them implemented in the PIC microcontroller, working in real-time. However, the
filter parameter tuning is tedious and, as expected, the EMD response is non-linear
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section 2.3.2). However, beyond the fact that EMD models are still
debated in biology and their spatial integration is not yet totally under-
stood (subsection 2.3.2), the need for true image velocity estimates and
insensitivity to contrast and spatial frequency of visual surroundings
led us to turn away from this model.

It is often proposed (e.g., Harrison and Koch, 1999; Neumann and
Bülthoff, 2002; Reiser and Dickinson, 2003) to linearly sum EMD sig-
nals over large receptive fields in order to smooth out the effect of non-
linearities and other imprecisions. However, a linear spatial summa-
tion can produce good results only if a lot of detectable contrasts are
present in the image, otherwise the spatial summation is highly depen-
dent on the number of intensity changes (edges) capable of triggering an
EMD signal. In our vertically striped experimental environments (sec-
tion 3.4), the spatial summation of EMDs would be highly dependent
on the number of viewed edges, which is itself strongly correlated with
the distance from the walls. Even with random distribution of stripes,
there is indeed more chance to see several stripes from far away than
from close by. As a result, even if a triggered EMD will tend to increase
its output with decreasing distances (as described in subsection 4.1.2),
the number of active EMD in the field of view will simultaneously de-
crease. In such cases, the linear summation of EMDs will destroy the
possibility of accurately estimating distances.

Although a linear spatial pooling scheme is suggested by the
matched-filter model of the tangential cells (see figure 2.9) and has been
used in several robotic projects (e.g., Neumann and Bülthoff, 2002;
Franz and Chahl, 2002; Reiser and Dickinson, 2003), linear spatial
integration of EMDs is not exactly what happens in the flies tangen-
tial neurons (subsection 2.3.3). Conversely, important non-linearities
have been highlighted by several biologists (Hausen, 1982; Frances-
chini et al., 1989; Haag et al., 1992; Single et al., 1997), but are not yet
totally understood.

4.2.2 Gradient-based Methods

An alternative class of optic flow computation has been developed
within the computer-vision community (see Barron et al., 1994; Verri
et al., 1992 for reviews), yielding output more independent of contrast
or image structure.

with respect to image velocity and strongly depends on image contrast.
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The standard approaches, the co-called gradient-based methods
(Horn, 1986; Fennema and Thompson, 1979; Horn and Schunck,
1981; Nagel, 1982), assume that brightness (or intensity) I(n,m, t) of
the image of a point in the scene does not change as the observer moves
relative to it, i.e.:

dI(n,m, t)

dt
= 0, (4.4)

where n and m are the vertical and horizontal spatial coordinates
in the image plane and t is the time. This equation can be rewritten
as a Taylor series. Simple algorithms throw away the second order
derivatives. In the limit as the time step tends to zero, we obtain the
so-called optic flow constraint equation:

∂I

∂n

dn

dt
+
∂I

∂m

dm

dt
+
∂I

∂t
= 0, with p = (

dn

dt
,
dm

dt
). (4.5)

Since this optic flow constraint is a single linear equation in two
unknowns, the calculation of the 2D optic flow vector p is underdeter-
mined. To solve this problem, one can introduce other constraints like,
e.g., the smoothness constraint (Horn and Schunck, 1981; Nagel, 1982)
or the assumption of local constancy9. Despite their differences, many
of the gradient-based techniques can be viewed in terms of three stages
of processing (Barron et al., 1994): (a) prefiltering or smoothing, (b)
computation of spatiotemporal derivatives, and (c) integration of these
measurements to produce a two-dimensional flow field, which often in-
volves assumptions about the smoothness. Some of these stages often
rely on iterative processes. As a result, the gradient-based schemes
tend to be computationally intensive and very few of them are able to
support real-time performance (Camus, 1995).

Srinivasan (1994) proposed an image interpolation algorithm10 (I2A)
in which the parameters of global motion in a given region of the im-
age can be estimated by a single-stage, non-iterative process, which
interpolates the position of a newly acquired image in relation to a
set of older reference images. This technique is loosely related to a
gradient-based method, but is superior to it in terms of its robust-

9The assumption that the flow does not change significantly in small neighbour-
hoods (local constancy of motion).

10This technique is quite close to the image registration idea proposed by Lucas and
Kanade (1981). I2A has been further developed by Bab-Hadiashar et al. (1996), who
quotes a similar methodology by Cafforio and Rocca (1976). A series of applications
using this technique (in particular for self-motion computation) exists (Chahl and
Srinivasan, 1996; Nagle and Srinivasan, 1996; Franz and Chahl, 2002; Chahl et al.,
2004). The I2A abbreviation is due to Chahl et al. (2004).
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Figure 4.5: EMD - I2A comparison (unidimensional case). (a) Spatial integra-
tion of several elementary motion detectors (EMDs) over an image region. See
figure 2.6 for details about internal functioning of an EMD. (b) The simplified
image interpolation algorithm (I2A) applied to an image region. Note that the
addition and subtraction operators are pixel-wise. The symbol s denotes the
image shift along the 1D array of photoreceptors. See subsection 4.2.3 for
details about the I2A principle.

ness to noise. This is because, unlike the gradient scheme, which
solves the optic flow constraint equation (4.5), the I2A incorporates an
error-minimising strategy (see next subsection and Srinivasan, 1994,
for further comparison with other methods).

Instead of spatially integrating local measurements, I2A estimates
the global motion of a whole image region covering a wider FOV (see
figure 4.5). Unlike spatially integrated EMDs, the I2A output has thus
no dependency on image contrast, nor on spatial frequency, as long
as some image gradient is present somewhere in the considered image
region.

4.2.3 Simplified Image Interpolation Algorithm

To meet the constraints of our hardware, the I2A has been adapted to
1D images and limited to pure shifts (image expansion or other defor-
mations are not taken into account in our simplified algorithm). The
implemented algorithm works as follows (see also figure 4.5b). Let I(n)

denote the grey level of the nth pixel in the 1D image array (note that,
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in this case, n is discrete and roughly corresponds to the azimuth ψ).
The algorithm computes the amplitude of the translation s between an
image region (hereafter simply referred to as the “image”) I(n, t) cap-
tured at time t, called reference image, and a later image I(n, t + 4t)
captured after a small period of time 4t. It assumes that, for small dis-
placements of the image, I(n, t+4t) can be approximated by Î(n, t+4t),
which is a weighted linear combination of the reference image and of
two shifted versions I(n± k, t) of that same image:

Î(n, t+4t) = I(n, t) + s
I(n− k, t)− I(n+ k, t)

2k
, (4.6)

where k is a small reference shift in pixels. The image displacement
s is then computed by minimizing the mean square error E between the
estimated image Î(n, t+4T ) and the new image I(n, t+4t) with respect
to s:

E =
∑

n

[
I(n, t+4t)− Î(n, t+4t)

]2
, (4.7)

dE

ds
= 0 ⇔ s = 2k

∑
n [I(n, t+4t)− I(n, t)] [I(n− k, t)− I(n+ k, t)]∑

n [I(n− k, t)− I(n+ k, t)]2
. (4.8)

In our case, the shift amplitude k is set to 1 pixel and the delay 4t is
such to ensure that the actual shift does not exceed ±1 pixel. I(n± 1, t)

are thus artificially generated by translating the reference image by one
pixel to the left and to the right, respectively.

Note that in this restricted version of the I2A, the image velocity is
assumed to be constant over the considered region. Therefore, if we
want to measure non-constant optic flow fields, I2A must be applied to
several subregions of the image where the optic flow can be considered
as constant. In practice, the implemented algorithm is robust to small
deviations from this assumption, but will of course be totally confused
if opposite optic flow vectors occur in the same subregion.

In the following, the software (I2A) and hardware (a subpart of the
1D camera pixels) will be referred to as an optic flow detector (OFD).
Such an OFD differs from an EMD in several respects (subsection
2.3.2). In general it has a wider FOV that can be adapted (by changing
the optics and/or the number of pixels) to the expected structure of the
flow field. In some sense, it participates in the process of spatial inte-
gration by relying on more than two photoreceptors. However, it should
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always do so in a region of reasonably constant OF. In principle, it has
no dependency on contrast or on spatial frequency of the image and its
output presents a good linearity with respect to image velocity as long
as the image shift remains in the limit of one pixel (or k pixels, in the
general case of equation 4.8).

4.2.4 Algorithm Assessment

In order to assess this algorithm with respect to situations that could
be encountered in real-world conditions, we performed a series of mea-
surements using artificially generated 1D images (figure 4.6) where we
compared the I2A output signal s to the actual shift of the images.
A set of high-resolution, sinusoidal, 1D gratings were generated and
subsampled to produce 50-pixel-wide images with different shifts from
-1 to +1 pixel with 0.1 steps. The first column of figure 4.6 shows
sample images from the series of artificially generated images without
perturbation (case A) and maximal perturbation (case B). The first line
of each graph corresponds to the I2A reference image whereas the fol-
lowing ones are the shifted versions of the reference image. The second
column of figure 4.6 displays the OF estimation produced by I2A versus
actual image shift (black lines) and the error E (equation 4.7) between
best estimate images and actual ones (gray lines). If I2A is perfect at
estimating the true shift, the black line should correspond to the diag-
onal. The third column of figure 4.6 highlights the quality of the OF
estimate (mean square error) with respect to the degree of perturbation
(from case A to case B). In this column, large OF mean square error
(MSE) indicates bad OF estimation.

A first issue concerns the sharpness of the image. In OF estimation,
it is customary to preprocess images with a spatial low-pass filter in
order to cancel out high-frequency content and reduce risk of aliasing
effects. This holds for I2A too and figure 4.6a shows the bad quality of
OF estimation with binary images (i.e., only totally black or white pix-
els). This result is expected because the spatial interpolation is based
on a first-order numerical differentiation, which fails to provide a good
estimate of the slope in presence of discontinuities (infinite slopes). It
is therefore important to low-pass filter images such that edges spread
over several adjacent pixels. A trade-off has to be found, however, be-
tween binary images and totally blurred ones where no gradient could
be detected anymore. A handy way of low-pass filtering images at no
computational cost is to slightly defocus the optics.
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Figure 4.6: Study of perturbation effects on OF estimation. (a) Effect of
Gaussian blur (sigma is the filter parameter). (b) Effect of contrast. (c) Ef-
fect of brightness change between reference image and new image. (d) Effect
of noise. See text for details.
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Low contrast11 instead does not alter I2A estimates (figure 4.6b). As
long as the contrast is not null, OF computation is performed reliably.
This means that for a given image, there is almost no dependency on
brightness settings of the camera, as long as the image gradient is not
null. As a result, one can easily find a good exposition time setting
and automatic brightness adjustment mechanisms could be avoided in
most cases. Note that this analysis does not take noise into account
and it is likely that noisy images will benefit from higher contrast in
order to disambiguate real motion from spurious motion due to noise.

Another issue with simple cameras in artificially lit environments
consists in the light flickering due to AC power sources, which could
generate considerable change in brightness between the two successive
image acquisitions of the I2A. Figure 4.6c shows what happens when
the reference image is dark and the new image is up to 50% brighter.
Here too, the algorithm performs very well, although, as could be ex-
pected, the error E is very large as compared to the other cases. This
means that even if the best estimated image Î(n, t + 4t) is far from
the actual new image because of the global difference in brightness, it
is still the one that best matches the actual shift between I(n, t) and
I(n, t+4t).

Another potential perturbation is the noise that can occur indepen-
dently on each pixel (due to electrical noise within the vision chip or
local optical perturbations). This has been implemented by the su-
perposition of a white noise up to 20% in intensity to every pixel of
the second image (figure 4.6d). The right-most graph shows that such
kind of disturbance has minor effect up to 5%, while the center graph
demonstrates the still qualitatively consistent although noisy OF esti-
mate even with 20%. Although I2A is robust to a certain amount of
noise, significant random perturbations like, e.g., those arising when
part of the camera is suddenly dazzled because a lamp or other re-
flections enters the field of view could significantly affect its output. A
temporal low-pass filter is thus implemented, which helps cancelling
out such spurious data.

These results can be summarised as follows. The technique for es-
timating OF has no dependency on contrast as long as some image
gradient can be detected. The camera should be slightly defocused to
implement a spatial low-pass filter and it is not necessary to worry
about flickering due to artificial lighting.

11Contrast is taken in the sense of the absolute difference between maximum and
minimum intensity in the image.
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Figure 4.7: Experiment with a purely rotating Khepera in order to compare
I2A output with gyroscopic data. Sensor values are normalised with respect
to the entire range of a signed 8-bit integer (±127). (a) Gyroscope data (solid
line with circles), related standard deviation of 1000 measurements for each
rotation speed (dashed line with circles), and OF values estimated using 48
pixels (solid line with squares), related standard deviation (dashed line with
squares). A value of 0.5 for the gyroscope correspond to 100◦/s. Optic flow
scale is arbitrary. (b) Average standard deviation of OF as a function of the
FOV and corresponding pixel number. Adapted from Zufferey and Floreano
(2004).

4.2.5 Implementation Issues

In order to build an OFD, equation (4.8) has been implemented in the
embedded microcontroller, which grabs two successive images corre-
sponding to I(n, t) and I(n, t + 4t) with a delay of a few milliseconds
(typically 5-15ms) at the beginning of every sensory-motor cycle. Pixel
intensities are encoded on 8 bits, whereas other variables containing
the temporal and spatial differences are stored in 32-bit integers. For
every pixel, equation (4.8) requires only 2 additions, 2 subtractions and
1 multiplication. Those operations are within the instruction set of the
PIC microcontroller and can thus be executed very efficiently even with
32-bit integers. The only division of the equation occurs once per image
region, at the end of the accumulation of the numerator and denom-
inator. Since we are programming in C, this 32-bit division relies on
a compiler built-in routine, which is executed in a reasonable amount
of time since the entire computation for a region of 30 pixels is per-
formed within 0.9ms. For comparison, a typical sensory-motor cycle
lasts between 50 and 100ms.
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In order to assess the OFD output in real-world conditions, the I2A
algorithm was first implemented on the PIC of kevopic equipped with
the frontal camera (subsection 3.2.2) and mounted on a Khepera. The
Khepera was then placed in the 60x60cm arena (figure 3.12b) and pro-
grammed to rotate on the spot at different speeds. In this experiment,
the output of the OFD can be directly compared to a gyroscope output.
Figure 4.7a presents the results obtained from an OFD with an image
region of 48 pixels roughly spanning a 120◦ FOV. Graph (a) illustrates
the perfect linearity of the OF estimates with respect to the robot ro-
tation speed. This linearity is in contrast with what could be expected
from EMDs (see figure 2.7 for comparison). Even more striking is the
similarity of the standard deviations between the gyroscope and OFD.
This indicates that most of the noise, which is indeed very small, can
be explained by mechanical vibrations of the Khepera (this is also why
the standard deviation is almost null at 0◦/s), and that the OFD is al-
most as good as the gyroscope at estimating rotational velocities. These
measurements support our earlier suggestion of cancelling rotatory op-
tic flow (RotOF) by simply subtracting a scaled version of the gyroscope
value from the global OF. Note that rather than scaling the OFD out-
put, one could simply adjust the delay 4t between the acquisition of
the two successive images of I2A so to match the gyroscopic values in
pure rotation.

To assess the effect of the FOV on the accuracy of an OFD output,
we repeated the same experiment while varying the number of pixels.
Note that for a given lens, the number of pixels is directly proportional
to the FOV. However, this 120◦ lens (Marshall) is the one providing the
lower angular resolution. Thus the results obtained in this experiments
represent the worst case because it is obvious that the higher the res-
olution, the better the accuracy of the estimation. Figure 4.7b shows
the average standard deviation of the OF measurements. The accu-
racy decreases reasonably until 12 pixels and 30◦ FOV. With only 6
pixels and 15◦, the accuracy is 3 times worse than with 48 pixels. This
trend may be explained by discretisation errors that tend to be better
cancelled out with an higher number of pixels. Another factor is that
a wider FOV provides richer images with more patterns allowing for a
better match of the shifted images. At the limit, a too small FOV would
sometimes have no contrast at all in the sampled image. When using
such OFDs, a trade-off has thus to be found between a large enough
FOV in order to ensure a good accuracy and a small enough FOV in
order to better meet the assumption of local constancy of motion, when
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Figure 4.8: Match between gyroscope data and estimates of the right and left
OFDs. The data have been recorded every 80ms while the F2 was held by hand
in the experimental arena and randomly rotated around its yaw axis. The top
graph displays the raw measurements, whereas the bottom graph shows their
low-pass filtered version. 100◦/sec is approximately the maximum rotation
speed of the plane in flight. Adapted from Zufferey and Floreano (2005).

the robot is not undergoing only pure rotations.

To make sure that this approach still give good results in another
configuration, we implemented two OFDs on the F2 airplane, one per
camera (see figure 3.9 for the camera orientations). This time, we chose
a FOV of 40◦ per OFD, which corresponds to 28 pixels with the EL-20
lens. The delay 4t was adjusted so to match the gyroscope output in
pure rotation. The calibration provided an optimal 4t of 6.4ms. The
airplane was then handled by hand and rotated about its yaw axis in its
experimental arena (figure 3.12e). Figure 4.8 shows the data recorded
during this operation and further demonstrate to the good match be-
tween rotations estimated by the two OFDs and by the gyroscope.
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4.3 Summary

The first section of this chapter provides mathematical tools (equations
4.1 and 4.2) allowing to derive the amplitude and direction of optic flow
given the self-motion of the agent and the geometry of the environment.
Those tools will be used in chapter 5 both to decide how to orient the
OFDs and to devise the control strategies using their outputs. An-
other important outcome of the formal description of optic flow is its
linear separability into a translatory component (TransOF) and a rota-
tory component (RotOF). Only TransOF can provide useful information
about distance from potential obstacles.

The second section presented the implementation of an optic flow
detector (OFD) that fits the hardware constraints of the flying aircrafts
while featuring linear response with respect to image velocity. Sev-
eral of them can be implemented on a robot, each looking at different
parts of the FOV (note that they could even have overlapping receptive
fields) where the optic flow is assumed to be almost constant. Only
the velocity component aligned with the 1D array of the camera can be
estimated by such an OFD.



Chapter 5

Bio-inspired Navigation Control

When we try to build autonomous robots, they are almost
literally puppets acting to illustrate our current myths
about cognition.

I. Harvey (2000)

Abstract

This chapter describes the development and assessment of robot con-
trollers for autonomous indoor flight. It deals with higher level infor-
mation processing than local optic-flow processing (chapter 4), such as
spatial combination of optic-flow signals and integration of gyroscopic
information in order to obtain efficient behaviours. The first section
describes concrete cases of optic flow fields arising in typical phases of
flight and discusses the position and orientation of the optic flow de-
tectors. The second section presents the strategies for altitude control
and steering control (course stabilisation and obstacle avoidance). The
third section describes the assessment of the proposed control strate-
gies, first on the Khepera then on the F2 airplane.

5.1 Characteristic Patterns of Optic Flow

A first integration issue consists in the choice of the position and orien-
tation of the optic flow detectors (OFDs) on the robots. Equation (4.1) is
employed to derive the typical optic flow (OF) patterns arising in partic-
ular flight situations. The chosen situations are those of (i) frontal ap-
proach toward a wall looking ahead to detect imminent collision and (ii)
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T

Ψ

wall

α
DW

D(Ψ)

Top-down view

Figure 5.1: Frontal approach toward a flat surface (wall). The distance from
the wall DW is defined as the shortest distance (perpendicular to the wall
surface). The approach angle α is null when the translation T is perpendicular
to the wall. D(Ψ) represents the distance from the wall under a particular
azimuth angle Ψ. Note that the drawing is a planar representation and in
general D is a function not only of Ψ, but also of the elevation Θ.

flying over a flat ground looking downward to perceive altitude. Since
the rotatory optic flow (RotOF) does not contain any information about
distances (subsection 4.1.2), this section focuses exclusively on trans-
latory motion (the robots are assumed to move perfectly straight). The
problem of cancelling RotOF will be tackled in subsection 5.2.3.

5.1.1 Frontal Approach

We consider the situation where the robot is approaching in straight
and level flight an infinitely large wall at a given angle of approach α

(figure 5.1). The simplest case is the perpendicular approach to the
wall (α = 0◦). Figure 5.2a displays the OF field arising in the frontal
part of the FOV. This field is divergent, meaning that all OF vectors
radiate from the focus of expansion (FOE). Note that the amplitude of
the vectors are not proportional to their distance from the FOE (i.e.,√

Ψ2 + Θ2). This would happen in the case where the distances D(Ψ,Θ)

from the obstacle are equidistant (i.e., a spherical obstacle centered at
the visual sensor). With a flat surface, however, the distance increases
as the elevation and azimuth angles depart from 0◦. Since D(Ψ,Θ) is in
the denominator of the optic flow equation (4.1), this results in weaker
OF amplitudes in the periphery. The locus of the viewing directions
corresponding to maximum OF amplitudes is a circle going through
Ψ = Θ = ±45◦ (de Talens and Ferretti, 1975).
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Figure 5.2: Ideal motion fields generated by forward motion at constant speed
(2m/s). (a) Frontal approach toward a wall. (b) Approach at 30◦. The first
column depicts the the robot trajectory as well as the considered FOV. The
second column shows the motion fields occurring in each situation. The third
column shows the signed OF amplitudes p at ±45◦ azimuth as a function of
the distance from the wall DW .

What happens when the distance from the obstacle DW decreases
over time as the plane is moving toward it? In figure 5.2a, third col-
umn, the signed1 OF amplitude p at Ψ = ±45◦ is plotted over time. Both
curves are obviously symmetrical and the values are inversely propor-
tional to DW , as predicted by equation (4.1). Since those signals are
asymptotic in DW = 0, they constitute good cues for imminent colli-
sion warning. For instance, a simple threshold at p = ±30◦/s would be
enough to trigger a warning 2m before collision (see vertical and hori-

1When considering the OF amplitude p = ‖p‖, we sometimes need to keep the
information of the vector orientation, in particular when merging with gyroscope out-
put. In this case, rightward and upward are positive, whereas leftward and downward
are negative. The positive OF orientations have been chosen so to match the posi-
tive rotations around the yaw and pitch axes (see figure A.1 for the definition of the
orientation of the body-fixed reference frame). Note that OF generated by positive
self-rotation has a negative sign.
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zontal dashed lines in figure 5.2a, right graph). According to equation
(4.1), this distance fluctuates with the airplane velocity ‖T‖, but in a
favorable manner. Since the optic-flow amplitude is proportional to the
translational velocity (p ∼ ‖T‖), if the plane flies at 3m/s instead of
2m/s, the warning will be triggered earlier (at 3m instead of 2m before
the wall), hence allowing more space for an avoidance action. In fact,
in such a scheme with a fixed threshold on the OF, the value DW

‖T‖ is
constant. This value is nothing else than the time to contact (TTC, see
subsection 2.3.3).

Based on these properties, it would be straightforward to place only
one OFD directed in a region of maximum OF amplitude (e.g., Ψ = 45◦

and Θ = 0◦) to ensure a good signal to noise ratio and monitor when
this value reaches a threshold. Note that whichever radially oriented
location on the circle of radius

√
Ψ2 + Θ2 = 45◦ could be chosen. How-

ever, in the real case of our airplane, the walls are not as wide as high
(see figure 3.12e). As a result, OFDs oriented at non null elevation have
a higher risk of looking at the ground or the ceiling. For this reason,
Ψ = 45◦ and Θ = 0◦ is the best choice.

What happens if the path direction is not perpendicular to the ob-
stacle surface? Figure 5.2b depicts a situation where α = 30◦. The
OF amplitude on the left is weaker whereas the amplitude on the right
is larger. In that case, the simplest solution is to sum (or average)
left and right OF amplitudes, which produce the same curve as in the
perpendicular case (compare the curves labelled OFDiv). This sum is
proportional to the OF field divergence and is therefore denoted OFDiv.
With this method2 to detect imminent collision using a minimum num-
ber of OFDs, the OFDiv signal could be measured by summing two
symmetrically oriented OFDs, both detecting OF along the equator.

Before adopting this method, it is interesting to consider how the OF
amplitude behaves on the frontal part of the equator, when the plane
is approaching the wall at different angles from 0◦ to 90◦ and what
would be the consequences on OFDiv. This can be worked out using
the motion parallax equation (4.2). The distance from the obstacle in
each viewing direction (see figure 5.1 for the geometry and notations)
is given by:

D(Ψ) =
DW

cos(Ψ + α)
. (5.1)

2This way of measuring OF divergence is reminiscent of the minimalist method
proposed by Ancona and Poggio (1993), using Green’s theorem (Poggio et al., 1991).
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Then, using the motion parallax, the OF amplitude can be retrieved:

p(Ψ) =
‖T‖
DW

sin Ψ · cos(Ψ + α). (5.2)

Building on this result, figure 5.3, left column, displays the OF am-
plitude in each azimuthal direction and for a set of approach angles
ranging from 0◦ (perpendicular approach) to 90◦ (parallel to the wall).
The second column plots the sum of the left and right sides of the first
column graphs. This sum corresponds to OFDiv as if it would be com-
puted for every possible azimuth in the frontal part of the equator. Up
to α = 30◦, the sum of OF remains maximum at |Ψ| = 45◦. For wider
angles of approach, the peak shifts toward |Ψ| = 90◦.

Before drawing conclusions about optimal OFD viewing directions
for estimating OFDiv, one should take into consideration the complex-
ity of the avoidance manoeuvre, which depends essentially on the ap-
proach angle. When arriving perpendicularly to the wall, the airplane
must perform at least a 90◦ turn. Instead, when following an oblique
course (e.g., α = 45◦), a 45◦ turn in the correct direction is enough to
avoid a collision, and so on until α = 90◦ where no avoidance action is
required at all. In a situation with two OF measurements at Ψ = ±45◦,
the OFDiv signal (figure 5.3, right column) will be 100% when the plane
is approaching perpendicularly and will decrease to 70% at 45◦, and to
50% at 90◦ (where no action is required). As a result, the imminent col-
lision detector will trigger 30% closer to the wall when the approach an-
gle is 45◦. The plane could also fly along the wall (α = 90◦) without any
warning at a distance 50% closer to the wall than if it would have flown
on a perpendicular trajectory. Therefore, this scheme for detecting ap-
proaching objects and imminent collision is particularly interesting for
obstacle avoidance, because it automatically adapts the occurrence of
the warning to the angle of approach and the corresponding complexity
of the avoidance manoeuvre.

A similarly interesting trend of the OFDiv signal computed as a sum
of left and right OF amplitudes happens in the case of approaching a
corner (figure 5.4). Here the minimal avoidance action is even greater
than in the worst situation with a simple wall because the plane should
turn by more than 90◦ (e.g., 135◦ when approaching on the bisectrix).
Fortunately, the OFDiv signal is significantly higher in that case be-
cause the average distances from walls are smaller (compare OFDiv

curve in figure 5.4 and 5.2).

In summary, two OFDs are theoretically sufficient for detecting im-
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Figure 5.3: Series of graphs showing the repartition of the unsigned, nor-
malised, OF amplitudes on the equator of the vision sensor (i.e., where Θ = 0◦)
in the case of a frontal approach toward a flat surface at different approach
angles α. The second column represents the symmetrical sum of left and right
OF amplitudes, as if the graphs on the left were folded vertically at Ψ = 0◦ and
the OF values for every |Ψ| were summed together.
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Figure 5.4: Same as figure 5.2, but for the case of an approach toward a wall
corner.

minent collisions. The best way of implementing them on the robot
is to orient their viewing directions such as Ψ = ±45◦ and Θ = 0◦ and
place them horizontally in order to detect OF along the equator. Sum-
ming their output would create an OFDiv signal that can be used with
a simple threshold to detect impending collision. A further interest-
ing property of this signal is that it reaches the same value at slightly
different distances from obstacles, and the way this distance varies is
adapted (i) to the complexity of the minimal avoidance action (the re-
quired turning angle), and (ii) to the velocity of flight.

5.1.2 Flying Over

The second situation of interest is the flight over a flat ground (figure
5.5). The typical OF pattern occurring in the bottom part of the FOV
is simpler than in the previous situations. As seen in figure 5.6, all
OF vectors are collinear. Following equation (4.1), their amplitude is
inversely proportional to the distances from the ground (p ∼ 1

D(Ψ,Θ)
). The

maximum OF amplitude in case of level flight is located at Θ = −90◦ and
Ψ = 0◦. Therefore, a single OFD oriented in this direction, i.e., vertically
downward, could be a good solution to estimate altitude because its
output is proportional to 1

DA
.

Now let us restrict the problem to 2D (as shown in figure 5.5), and
analyse what happens to the OF field along Ψ = 0◦ when the airplane
makes pitch adjustments in order to correct its altitude. As before, the
motion parallax equation (together with the distance from ground at
each elevation angle) allows to gain better insight into the problem (see
figure 5.5 for the geometry and notations):
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Figure 5.5: Flying over a flat surface (ground). The distance from the ground
DA (altitude) is defined as the shortest distance (perpendicular to the ground
surface). The pitch angle θ is null when T is parallel to the ground. D(Θ) rep-
resents the distance from the ground at a particular elevation angle Θ in the
visual sensor reference frame. Note that the drawing is a 2D representation
and in general D is a function not only of Θ, but also of the azimuth Ψ.
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cally toward the ground.
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D(Θ) =
DA

− sin(Θ + θ)
⇒ p(Θ) =

‖T‖
DA

sin Θ · sin(Θ + θ). (5.3)

Equation (5.3) gives the OF amplitude as a function of the elevation
for different cases of negative pitch angles (figure 5.7). Of course, the
situation is symmetrical for positive pitch angles. Based on this result,
the plots in figure 5.7 reveal that the location of the maximum OF is
Θ = −90◦ plus half the pitch angle. For example, if θ = −30◦, the peak
is located at Θ = −90− 30/2 = −75◦ (see vertical dashed line in the third
graph). This property can be derived mathematically from equation
(5.3):

dp

dΘ
=
‖T‖
DA

sin(2Θ + θ) and
dp

dΘ
= 0 ⇐⇒ Θmax =

θ + kπ

2
. (5.4)

The peak amplitude weakens only slightly when the pitch angle de-
parts from 0◦. Therefore, only one OFD pointing vertically downward
is likely to provide sufficient information to control altitude, especially
with an airplane that will hardly exceed ±10◦ of pitch angle.

However, in situations where the pitch angle is not limited to small
values, several OFDs could be implemented, each oriented at different
elevation angles. Then only the OFD providing maximum output signal
should be considered. This would allow to automatically follow the
peak location (whose value is directly related to the altitude) and, in
some sense, track the minimum distance to the ground. Although not
used nor tested in this thesis, this could also give an estimation of the
current pitch angle of the plane and thus provide a vertical reference
(see also subsection 2.4.1).

5.2 Information Processing and Control

This section describes how to combine the biological models presented
in chapter 2 and the insights into typical OF patterns gained in the
previous section in order to devise efficient control strategies relying on
sensory information from several OFDs and a gyroscope. Since attitude
control (ATC) is not required3, control strategies are proposed only for
course stabilisation (CS), obstacle avoidance (OA) and altitude control
(ALC). Theoretically, this minimal set of control strategies is sufficient
to drive a flying robot in enclosed environments. In the next section,

3For a discussion about passive attitude stability of the F2, see subsection 3.1.3.
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Figure 5.7: Series of graphs showing the repartition of the unsigned, nor-
malised, OF amplitudes in the longitudinal direction (i.e., Ψ = 0◦) in the case
of a flight over a flat surface at different pitch angles θ.

assessment of OA and ALC are done with the Khepera, whereas au-
tonomous steering (CS and OA) is demonstrated with the 30-gram air-
plane.

5.2.1 Steering Control (CS & OA)

The steering strategy (CS and OA) is largely inspired by a recent study
by Tammero and Dickinson (2002b) on the behaviour of free-flying
fruitflies (subsection 2.4.3). They showed that

• OF divergence experienced during straight flight sequences is re-
sponsible for triggering saccades,

• the direction of the saccades (left or right) is opposite to the side
experiencing larger OF, and

• during saccades no visual feedback seems to be used.
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The proposed steering strategy can thus be divided into two states: (i)
maintain straight course (CS) and (ii) turn as quickly as possible as
soon as an imminent collision is detected (OA).

Course Stabilisation (CS)

Maintaining a straight course is important in two respects. On the
one hand, it spares energy in flight because when a plane banks, it
must produce additional lift in order to compensate for the centrifugal
force. On the other hand, it provides better conditions for estimating
OF because the airplane is in level flight and frontal OFDs will see only
the contrasted walls and not the ceiling and floor.

In subsection 2.4.2, it was said that flying insects are believed to im-
plement CS using both visual and vestibular cues. In order to achieve
straight course with our artificial systems, we propose to rely exclu-
sively on gyroscopic data. It is likely that the artificial gyroscope has
higher accuracy than the halteres’ system, especially at low rotation
rates. Moreover, decoupling the sensory modalities by attributing the
gyroscope to CS and vision to OA allows to simplify the control struc-
ture.

With an airplane, CS can thus be easily implemented by means of
a proportional feedback loop connecting the gyroscope to the rudder
servomotor. Note that, unlike the plane, the Khepera does not need a
gyroscope for moving straight since its wheel speeds are regulated and
almost no slipping occurs between the wheels and the ground. Issuing
the same speed command to both wheels will force the robot to move
straight.

Obstacle Avoidance (OA)

A saccade (quick turning action) allows to avoid collisions. To detect
imminent collisions, we propose to rely on the spatio-temporal integra-
tion of motion (STIM) model (subsection 2.3.3), which spatially and
temporally integrates optic flow from the left and right eyes. Note
that according to Tammero and Dickinson (2002a), the STIM model
remains the one that best explains the landing and collision-avoidance
responses in their experiments. Considering this model from an engi-
neering viewpoint, imminent collision can be detected during straight
motion using the OFDiv signal obtained by summing left and right OF
amplitudes measured at ±45◦ azimuth, (subsection 5.1.1). Therefore,
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two OFDs must be mounted horizontally and oriented at 45◦ on both
sides of the forward direction. Let us denote LOFD the output sig-
nal of the left detector and ROFD that of the right one, OFDiv is thus
obtained as follows:

OFDiv = ROFD + (−LOFD). (5.5)

Note that OFD output signals are signed OF amplitudes that are
positive for rightward motion. In order to prevent noisy transient OFD
signals (that may occur long before an actual imminent collision) to
trigger a saccade, the OFDiv signal is low-pass filtered. Figure 5.8 out-
lines the comparison between the fly model and the system proposed
for the robots. Note that a leaky integrator (equivalent to a low-pass
filter) is also present in the fly model and accounts for the fact that
weak motion stimuli do not elicit any response (Borst, 1990).4

As pointed out in subsection 5.1.1, the output signal OFDiv will
reach the threshold in a way that depends on the speed, the angle of
approach and the geometry of the obstacle. For instance, the higher
the approach speed, the further from obstacle the trigger will occur.

Choosing the Saccade Direction

As seen in chapter 4, close objects generate larger translatory optic
flow. The left-right asymmetry OFD outputs prior to each saccade is
thus used in order to decide the direction of the saccade. The same
strategy seems to be used by flies to decide whether to turn left or right
(Tammero and Dickinson, 2002b). A new signal is thus defined, which
measures the difference between left and right absolute OF values:

OFDiff = |ROFD| − |LOFD| . (5.6)

A closer obstacle on the right results in a positive OFDiff , whereas
a closer obstacle on the left produces a negative OFDiff .

Finally, figure 5.9 shows the overall signal flow diagram for sac-
cade initiation and direction selection. The graph already integrates
the RotOF cancellation mechanism that will be described in subsection
5.2.3.

4However, the time constant of the low-pass filter could not be precisely deter-
mined.
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Figure 5.8: The STIM model (on the left, adapted from Borst and Bahde, 1988)
as compared to the system proposed for our robots (on the right). (a) The out-
put of motion detectors (EMDs) sensitive to front-to-back motion are spatially
pooled from each side. The resulting signal is then fed into a leaky temporal
integrator (functionally equivalent to a low-pass filter). When the temporal
integrator reaches a threshold, a preprogrammed motor sequence can be per-
formed, either to extend legs or to trigger a saccade (see subsection 2.3.3 for
further discussion). (b) The system proposed for imminent collision detection
in our robots is very similar. The spatial pooling of EMDs on left and right
regions of the field of view are replaced by two OFDs.

5.2.2 Altitude Control (ALC)

As suggested in subsection 2.4.4, altitude can be controlled by hold-
ing ventral optic flow constant. This idea is based on experiments with
honey-bees that seem to use this kind of mechanism for tasks like graz-
ing landing and control of flight speed. A more detailed analysis of the
typical patterns of ventral optic flow has been presented in subsection
5.1.2, highlighting the loci of maximum OF amplitude when the pitch
angle varies. As long as these variations are kept small (typically ±10◦),
it is reasonable to use only one vertical OFD. As proposed in subsec-
tion 5.1.2, if larger pitch angles can occur, it is worth to track the peak
OF value. In this case, several OFDs pointing at different elevations
must be implemented and only the OFD producing the maximum out-
put (winner-take-all) is taken into account in the control loop.
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Figure 5.9: Signal flow diagram for saccade initiation (obstacle avoidance)
based on horizontal OF divergence and rotation rate as detected by the yaw
gyroscope. Arrows on top of the diagram indicate the positive directions of
OFDs and gyroscope (note that rightward self-rotation produces negative or
leftward OF). LPF stands for low-pass filter and ABS is the absolute value op-
erator. Signal from OFDs and gyroscope are first low-pass filtered to cancel
out high-frequency noise (see figure 4.8). Below this first-stage filtering, one
can recognise, on the left (black arrows), the STIM model responsible for sac-
cade initiation and, on the right (gray arrows), the pathway responsible for
deciding whether to turn left or right.

The type of control loop linking ventral OF amplitude to the pitch
angle should be proportional and derivative in order to counterbalance
the integrative effect of the pitch angle θ on the variation of the altitude,
i.e., dDA

dt
∼ θ (see figure 5.5).

5.2.3 Rotatory Optic Flow Cancellation

The above control strategies are likely to fail whenever a rotational
movement occurs. For instance, a superimposed pitching rotatory OF
signal (RotOF, see subsection 4.1.2) would have a dramatic impact on
the altitude control loop. This will happen whenever the control sys-
tem itself is acting on the elevator to change the pitch angle. The same
holds for the horizontal OFDs used for obstacle avoidance. Every mod-
ification of trajectory by the course stabilisation mechanism or, more
prosaically, every air turbulence will produce some RotOF.
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As seen in chapter 4, these RotOF components do not contain any
information about surrounding distances, and for all kinds of tasks re-
lated to distance, a pure translatory OF field is desirable (Srinivasan
et al., 1996). This holds for the robots just as it does for the fly, which
is known to compensate with its head for rotations detected by its hal-
teres (subsection 2.4.2). Since our airplane cannot afford additional
actuators to move its cameras, we propose another means of cancelling
RotOF, based on the same sensory modality used by flies.

It is in principle possible to deduce RotOF from the global flow field
by simple vector subtraction, because the global OF is a linear combi-
nation of translatory and rotatory components (subsection 4.1.2). To
do so, it is necessary to know the rotation, which can be measured
with another sensory modality such as a gyroscope. In our case the
situation is quite trivial because the OFDs are unidimensional and a
gyroscope is mounted with its axis oriented perpendicular to the pixel
array and the viewing direction (see subsection 3.2.2). This arrange-
ment reduces the correction operation to a scalar subtraction. Of
course a simple subtraction can be used only if the optic flow detec-
tion is linearly dependent on the rotation speed (which is not the case
of EMDs). Subsection 4.2.5 further supports this method of RotOF de-
duction by demonstrating the good match between OFD signals and
gyroscope output in pure rotation.

Note that, OFDiv as computed in equation (5.5) is not sensitive to
yaw rotation because the rotatory component is equally detected by the
two OFDs, whose outputs are subtracted.5 Unlike OFDiv, OFDiff does
suffer from RotOF and must be corrected with the gyroscope signal
(figure 5.9). The same holds for any OF signals used in altitude control.

5.3 Experiments and Results

This section describes real-world test of the proposed control strate-
gies. First a preliminary test of altitude control (ALC) is carried out on
the Khepera robot by transposing the problem into a wall following sit-
uation. Saccadic obstacle avoidance (OA) is then implemented on the
wheeled robot as a preliminary step toward the final experiment con-
sisting in autonomous steering (CS and OA) of the 30-gram airplane.

5This property is also pointed out by Ancona and Poggio (1993). The method for
computing flow divergence is independent on the location of the focus of expansion.
This means that the measured divergence remains unaltered, even if the FOE shifts
due to rotation.
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Figure 5.10: Outline of the Khepera equipped with the wide FOV lateral cam-
era (see also figure 3.9a) for the wall-following experiment. Four OFDs are
implemented, each using a subpart of the pixels.

5.3.1 Altitude Control as Wall Following on Wheels

In order to assess the altitude control mechanism suggested in sub-
section 5.2.2, we implemented it as a wall following mechanism in the
Khepera (kevopic) with the camera oriented laterally (figure 5.10). In
this situation, the distance from the wall would correspond to the alti-
tude of the aircraft. Four OFDs are implemented each using a subpart
of the pixels of the single onboard 1D camera.

A proportional-derivative controller tries to hold the OF amplitude
constant by acting on the differential speed between the left and right
wheels, which roughly corresponds to an elevator deflection command
on an airplane. As described in the previous subsection, yaw gyroscope
signal is used to remove the spurious RotOF occurring when the differ-
ential speed is not null. The OFD value used by the controller is always
the one producing the highest output among the four OFDs. In prac-
tice, only the two central OFDs are often in use, but it can happen that
the external ones are used when the Khepera takes very steep angles
with respect to the wall.

Several tests have been performed with a 120cm-long wall (figure
5.11). Although the robot does not always keep the same distance from
the wall, these tests show that such a simple control strategy based
on optic flow could produce reliable altitude control. Note that this
would not have been possible without RotOF correction. This control
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Figure 5.11: Altitude control (implemented as wall following) with the Khep-
era. Top: 120cm long setup and the Khepera with the lateral camera. Bottom:
Wall following results (3 trials). The black circle indicates the robot’s initial
position. Trajectories are reconstructed from wheel encoders. Adapted from
Zufferey and Floreano (2005).

strategy relies on no other sensors than vision and gyroscope. It is
therefore a good candidate for an ultra-light flying aircraft. However,
this experiment remains a proof of concept and no further tests have
been made on aerial robots at this stage. A few problems are likely to
arise with an aerial robot. Among others, the fluctuation of forward
velocity whenever the pitch angle is modified could provoke instability
in the control loop. See section 6.4 for further discussion about how
this altitude control strategy could be implemented on an airplane and
what are the main concerns.

5.3.2 Steering Control on Wheels

The steering control proposed in subsection 5.2.1 (without course sta-
bilisation that is not required on wheels) was tested in a square arena
(figure 3.12b) with the Khepera equipped with the frontal camera (fig-
ure 5.12). Two OFDs with a FOV of 30◦ are implemented using 50% of
the available pixels. The OFDiv signal is computed by subtracting the
output of the left OFD from the output of the right OFD (see equation
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Figure 5.12: Arrangement of the OFDs on the Khepera equipped with frontal
camera (see also figure 3.9a) for the obstacle avoidance experiment.

5.5).
As proposed in subsection 5.2.1, the steering control is composed

of two states: (i) straight forward motion at constant speed (10cm/s)
during which the system continuously computes OFDiv, (ii) rotation
for a fixed amount of time (1s) during which sensory information is
discarded. We chose one second in order to produced a rotation of
approximately 90◦, which is in accordance with what was observed in
Tammero and Dickinson (2002b). The transition from state (i) to state
(ii) is triggered whenever OFDiv reaches a threshold whose value is
experimentally determined beforehand. The direction of the saccade
is determined by the asymmetry OFDiff between left and right OFDs,
i.e., the Khepera turns away from the side experiencing larger OF value.

Equipped with this steering control, the Khepera was able to navi-
gate without collisions for more than 45 minutes (60’000 sensory-motor
cycles), during which 84% of the time was engaged in straight motion
and the remaining 16% in turning actions. Figure 5.13 shows a typ-
ical trajectory of the robot during this experiment and highlights the
resemblance with flies’ behaviour.

5.3.3 Steering Control of the Airplane

Encouraged by these results, we proceeded to autonomous steering ex-
periments with the F2 airplane (subsection 3.1.3) in the arena depicted
in figure 3.12e. The 30-gram aircraft is equipped with two miniature
cameras oriented at 45◦ from the forward direction, each providing 28
pixels for the left and right OFDs spanning 40◦ (figure 5.14). How-
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Figure 5.13: (a) Obstacle avoidance with the Khepera. Path of the robot in au-
tonomous steering mode: straight motion with saccadic turning action when-
ever image expansion (OFDiv) reaches a threshold. The black circle repre-
sents the Khepera at its starting position. The path has been reconstructed
from wheel encoders. Adapted from Zufferey and Floreano (2005) (b) For com-
parison, a sample trajectory (17s) within a textured background of a real fly
Drosophila melanogaster. Reprinted from Tammero and Dickinson (2002b).

ever, at this stage we did not use yet vertical OFDs, but controlled the
altitude of the airplane manually.

A radio connection (subsection 3.2.3) with a laptop computer is al-
ways established in order to log sensor data in real-time while the robot
is operating. The plane is started manually from the ground by means
of a joystick connected to the laptop. When it reaches an altitude of
approximately 2m, a command is sent to the robot that puts it in au-
tonomous steering mode. While in this mode, the human pilot has
no access to the rudder (the vertical control surface, see figure 3.6),
but can modify the pitch angle by means of the elevator (the horizontal
control surface).6 The typical sensory-motor cycle lasts 80ms. During
this period, data from onboard sensors are processed, commands for
the control surfaces are issued, and significant variables are sent to
the laptop for later analysis. About 50% of this sensory-motor cycle is
spent in wireless communication.

As a reminder, the control strategy is summarised in figure 5.15.
During saccades, whose length has been set to 1 second7, the motor

6If required, the operator can switch back to manual mode at any moment, al-
though a crash into the curtained walls of the arena does usually not damage the
lightweight airplane.

7This length has been chosen in order to roughly produce 90◦ turns per saccade.
However, this angle can fluctuate quite a bit depending on the velocity the robot
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Figure 5.14: Arrangement of the two OFDs on the F2 airplane. See also the
picture in figure 3.9b.

is set to full power, the rudder deflection follows an experimentally op-
timised curve up to full deflection, and the elevator is slightly pulled
to compensate for the decrease in lift during banked turns (an action
which is well known to air pilots). At the end of a saccade, the plane
resumes straight flight while it is still in an inclined position. Since
inclined wings always produce a yaw movement, the proportional con-
troller based on the gyroscope (subsection 5.2.1) will compensate for
the inclination and force the plane back to zero yaw and roll. We also
implemented an “inhibition” period after the saccade, during which an-
other turning action cannot be triggered. This allows for the plane to re-
cover almost straight flight before deciding whether to perform another
saccade. In our case, the inhibition is active as long as the gyroscope
indicates an absolute yaw rotation larger than 20◦/s. This inhibition
period also allows to reset the OFDiv and OFDiff signals that can be
affected by the strong optic flow values occurring just before and during
the saccade.

Before testing the plane in autonomous conditions, the OFDiv

threshold for initiating a saccade (see figure 5.9) has been experimen-
tally determined by flying manually in the arena and recording OFD
signals when frontally approaching a wall until the latest possible mo-
ment when the pilot had to start an emergency turn. The recorded OFD
data were analysed and the threshold chosen on the basis of the value
reached by OFDiv just before steering.

displays at the saccade start.
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Figure 5.15: Overview diagram of the control strategy implemented on the F2
airplane. On the left are the sensory inputs (optic-flow detectors and gyro-
scope) and on the right is the system output (rudder actuator). This diagram
is voluntarily inspired from the subsumption architecture proposed by Brooks
(1999). The encircled S represents a suppressive node; this means that, when
active, the signal coming from above replaces the signal usually going hori-
zontally trough the node.

Results

In an endurance test, the 30-gram robot was able to fly collision-free
in the 16x16m room for more than 4 minutes without any steering in-
tervention.8 The plane was engaged in turning actions only 20% of the
time, which indicates that it flew always in straight trajectories except
when very close to the walls. During those 4 minutes, it generated 50
saccades, and covered about 300m in straight motion.

Unlike the Khepera, the F2 has no embedded sensors allowing for
plotting its trajectory. Instead, figure 5.16 displays a detailed 20-
second sample of the data acquired during typical autonomous flight.
Saccade periods are indicated with horizontal gray bars spanning all
the graphs. In the first column, the gyroscope data provide a good
indication of the behaviour of the plane, i.e., straight trajectories in-
terspersed with turning actions, during which the plane can reach a
yaw rotation rate of 100◦/s. OF is estimated by the OFDs computed
from the 1D images shown in the center column. The quality of the
lightweight imagers and optics does not provide perfect images. As a
result, OFD signals (on the two next graphs) are not always accurate,

8Video clips showing the behaviour of the plane can be downloaded from
http://phd.zuff.info.
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Figure 5.16: Sensor and OF data during autonomous flight (225 sensory-
motor cycles). First column is the yaw gyroscope and indicates how much
the plane is rotating (rightward positive). Next column displays the images
as seen by the two cameras over time. Third and fourth columns are the
OF as estimated by the left and the right OFDs, respectively. Fifth and sixth
columns show OF divergence OFDiv and difference OFDiff when absolute
value of the gyroscope is less than 20◦/s, i.e., when the plane is flying almost
straight. The dashed vertical line in the OFDiv graph represents the threshold
for triggering a saccade. The gray horizontal lines spanning all the graphs
indicate the saccades themselves, i.e., when the turning motor program is
in action. The first saccade is leftward and the next three are rightward, as
indicated by the gyroscope values in the first column. Adapted from Zufferey
and Floreano (To appear).
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especially when the plane is close to walls (few visible stripes) with a
high yaw rotational velocity. This situation happens during the sac-
cade inhibition period. Therefore, we set OFDiv and OFDiff (two last
columns of Figure 5.16) to zero whenever the gyroscope indicates a yaw
rotation larger than 20◦/s.

When OFDiv reaches the threshold indicated by the dashed line, a
saccade is triggered. The direction of the saccade is given by OFDiff ,
which is plotted on the right-most graph. The first turning action is
leftward because OFDiff is positive when the saccade is triggered.
The remaining turns are rightward because of the negative values of
OFDiff . When the approach angle is not perpendicular, the sign of
OFDiff is well defined, as in the case of the third saccade. In other
cases, as before the second saccade, OFDiff is oscillating probably
because the approach angle is almost zero. Note however that in such
cases, the direction of the turning action is not important since the sit-
uation is symmetrical and there is no preferred direction for avoiding
the obstacle.

5.4 Summary and Discussion

Bio-inspired, vision-based control strategies for autonomous steering
and altitude control have been developed and assessed on a wheeled ro-
bot and an ultra-light aircraft. Information processing and navigation
control are performed exclusively by the small embedded 8-bit micro-
controller. In this section, we briefly discuss the steering and altitude
control strategies and come back on the three levels of bio-inspiration.

Steering Control

In comparison to most previous works in bio-inspired vision-based ob-
stacle avoidance (subsection 1.2.2) our approach relies on less powerful
processor and lower resolution visual sensor in order to enable opera-
tion in self-contained, ultra-light robots in real-time. In contrast to the
optic-flow-based airplanes from Barrows et al. (2001) and Green et al.
(2004) (see also subsection 1.2.2, second part), we demonstrated con-
tinuous steering over an extended period of time (50 avoidance actions
without failure) with an aircraft that is able to avoid obstacles on both
sides as well as frontal ones. However, we did not yet test our aircraft
in other environments than the textured arena (figure 3.12e).
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A question that could be raised about steering control experiments
is why did the aircraft flown “only” 4 minutes9 whereas the Khepera
was able to ride for more than 45 minutes. The most probable reason
of failure is the lighting conditions of the environment that was far less
homogeneous than in the case of the Khepera (as can be seen in fig-
ure 3.12). In particular, it could happen that a camera was suddenly
blind by light coming from outdoor. Since no brightness adaptation
was implemented, this could provoke a failure of the saccade initia-
tion mechanism. However, the 4 minutes of autonomous operation
already demonstrate the good robustness that was achieved without
much tuning of parameters. Due to time restriction (availability of the
hall), it was indeed not possible to fine-tune all parameters (such as the
time constants of the temporal low-pass filters) and to systematically
analyse data just before a failure to determine exactly what happened.

Altitude Control

Our approach to optic-flow-based altitude control proposes two new
ideas with respect to previous work (Barrows et al., 2001; Chahl et al.,
2004; Ruffier and Franceschini, 2004). The first one is the pitching
rotatory optic-flow cancellation with a MEMS gyroscope, which allows
to get rid of the spurious signals occurring whenever a pitch correction
occurs. The second is the automatic tracking of the ground perpen-
dicular distance (with a winner-take-all circuit choosing among several
optic-flow detectors) releasing for the need of measuring the pitch an-
gle with another sensor. Although much work remains to be done to
further assess this idea10, the theoretical improvement is encouraging
because there are not yet good solutions to provide a vertical reference
on an ultra-light aircraft (MEMS inertial inclinometers are subject to
longitudinal accelerations).

To cope with the issues of rotatory optic flow and vertical reference,
Ruffier and Franceschini (2004) could regulate the absolute pitch angle

9Note that the airplane has a maximum energetic autonomy of only 30 minutes and
the battery was not always fully charged at the moment of testing. Also, a human-
operator must follow the aircraft during the whole testing period in order to send
small altitude corrections and 45 minutes would require much endurance from the
pilot.

10Testing different arrangement of optic-flow detectors with or without overlapping
field-of-views, or explicitly using the information about the pitch within the control
loop. Note that this method would likely require a quite high resolution of the optic-
flow field and thus an high spatial frequency on the ground and a number of optic-
flow detectors.
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by means of the servomotor mounted at the articulation between the
boom and the aircraft (see also figure 1.4c) and actively oriented the
camera toward the ground (with a mechanism similar to gaze stabili-
sation). Barrows et al. (2001) and Chahl et al. (2004) did not take care
of this problem, which probably had a crucial influence on the limited
results they obtained in altitude control (subsection 1.2.2).

Although the altitude control system has not yet been tested in
flight, the strategy would be to regulate altitude only during straight
motion in order to ensure an almost null roll angle. During saccade,
open-loop control of the elevator command has proved to be acceptable
to keep altitude since the duration of the saccade is very limited. Optic-
flow-based altitude control during banked turns would anyway not be
viable because of considerable changes in flight velocity and large roll
angles that would preclude a vertically oriented (with respect to the
body-fixed frame) optic-flow sensor from measuring the perpendicular
distance to the ground.

Bio-inspiration at Three Levels

Navigation control of our robots was enabled by selectively mimicking
flying insects at different levels (chapter 2): perceptive organs, infor-
mation processing and behaviour. Here we come back on these three
topics and discuss the similarities and differences between our robots
and the inspiring animals.

The perceptive organs of flying insects has been our main source of
inspiration in the selection of sensors for the robots. Although the flies
possess a range of mechanosensors (subsection 2.2.3), eyes and hal-
teres are the most important sensors for flight control (section 2.2). It
is remarkable that, unlike most classical autonomous robots, flying in-
sects possess no active distance sensors like sonars. This is probably
because of the inherent complexity and energy consumption of such
sensors. The gyroscope equipping the robot can be seen as a close
copy of the Diptera’s halteres (subsection 2.2.2). The selected artificial
vision system (subsection 3.2.2) shares with its biological counterpart
an amazingly low resolution. Its inter-pixel angle (1.4-2.6◦) is of the
same order of magnitude as the interommatidial angle of most flying
insects (1-5◦, see subsection 2.2.1). On the other hand, the field of
view of our robots is much smaller than that of most flying insects.
This discrepancy is mainly due to the lack of technology allowing for
building miniature, omnidirectional visual sensors sufficiently light to
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fit the constraints of our indoor aircrafts. In particular, no industrial in-
terest exists so far in the development of a compound lens architecture
and commercial omnidirectional mirrors are too heavy. We have partly
compensated the lack of omnidirectional vision sensors by using two or
more small vision sensors looking in the directions of interest, which
were carefully identified beforehand (section 5.1). In principle, three
1D cameras (two horizontal, pointing forward at 45◦, and one longitu-
dinally oriented, pointing vertically to the ground) should be sufficient
for autonomous steering and altitude control of an airplane in simple
indoor environments.

The second level of bio-inspiration concerns the stage of informa-
tion processing. Although the extraction of OF itself is not inspired by
the EMD model (subsection 2.3.2) because of its known dependency
on contrast and spatial frequency (subsection 4.2.1), OF is employed
in our robots as a primary cue for behaviour control. An efficient al-
gorithm for OF detection has been adapted to fit the embedded 8-bit
microcontroller (section 4.2). As in flying insects, divergent optic flow
is used to detect approaching objects (subsection 2.3.3) and ventral
optic flow as a cue to perceive altitude over ground (subsection 2.4.4).
The attractive feature of such simple solutions for depth perception is
that they do not require explicit measurement of distance or time-to-
contact, nor do they rely on accurate knowledge of the flight velocity.
Furthermore, we have shown that in certain cases, they intrinsically
adapt to the flight situation by triggering warnings farther away from
obstacles that appear to be harder to avoid (subsection 5.1.1). Another
example of bio-inspired information processing is the fusion of gyro-
scopic information with vision. Although the simple scalar summation
employed in our robots is probably far from what actually happens in
the fly’s nervous system, it is clear that some important interactions
between visual input and halteres’ feedback exist in the animal (sub-
section 2.3.3).

The third level of bio-inspiration concerns the behaviours. Alti-
tude control is based upon mechanisms inferred from experiments with
honeybees that have been shown to regulate the experienced OF in a
number of situations (subsection 2.4.4). Instead, the steering strat-
egy composed of straight sequences interspersed with rapid turning
actions is inspired by flies’ behaviour. While in flies some saccades
are spontaneously generated in the absence of any visual input, re-
construction of OF patterns based on flies’ motion through an artificial
visual landscape suggests that image expansion plays an fundamental
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role in triggering saccades (subsection 2.4.3). Apart from providing a
way of minimising rotatory optic flow, straight flight sequences also in-
crease the quality of visual input by maintaining the plane horizontal
and spare flight energy (subsection 5.2.1). In our robots, the entire
saccade is performed without sensory feedback. During saccades, bi-
ological EMDs are known to operate beyond their linear range where
the signal could even be reversed because of temporal aliasing (Srini-
vasan et al., 1999)). However, the role of visual feedback in the control
of these fast turning manoeuvres is still under investigation (Tammero
and Dickinson, 2002a). Halteres’ feedback is more likely to have a ma-
jor impact on the saccade duration (Dickinson, 1999). Our robots do
not yet use any sensory feedback during saccade. However, the use
of gyroscopic information could provide a good way of controlling the
angle of the rotation. Finally, the precise roles of halteres and vision in
course (or gaze) stabilisation of flies is still unclear (subsection 2.4.2).
Both sensory modalities are believed to have an influence, whereas in
our robots, course stabilisation and RotOF cancellation (which can be
seen as the placeholder of gaze stabilisation in flies) rely exclusively on
gyroscopic information.

Finally, bio-inspiration was of great help in the design of au-
tonomous, vision-based robots. However, a lot of engineering insight
was required to tweak biological principles so that they could match
the final goal. It is also to notice that biology often lack of synthetic
models, sometimes because of the lack of engineering attitude in biol-
ogists (see Wehner, 1987 for a discussion), sometimes because of the
lack of experimental data. For instance, biologists are just starting to
study neuronal computation in flies with natural, behaviourally rel-
evant stimuli (Lindemann et al., 2003), which will probably question
the principles established so far with simplified stimulus (Egelhaaf and
Kern, 2002). Moreover, mechanical structures of flying robots as well
as their processing hardware will never perfectly match biological sys-
tems. These considerations compelled us to test an alternative solution
to biomimetism as performed in this chapter, which takes inspiration
from biology at (yet) another level (next chapter).





Chapter 6

Evolutionary Approach

In this chapter things get slightly out of hand. You may
regret this, but you will soon notice that it is a good idea to
give chance a chance in the further creation of new brands
of vehicles. This will make available a source of intelligence
that is much more powerful than any engineering mind.

V. Braitenberg (1984)

Abstract

This chapter explores alternative strategies for vision-based navigation
that meet the constraints of our indoor flying robots (few computa-
tional resources, only low-resolution vision and gyroscope, and com-
plex dynamics). A genetic algorithm is used to evolve artificial neural
networks that map sensory signals into motor commands. A sim-
ple neural network model has been developed, which fits the limited
processing power of our lightweight robots and ensures real-time capa-
bility. The same sensory modalities as in chapter 5 are used, whereas
information processing strategies and behaviours are automatically de-
veloped through artificial evolution. First tested on wheels with the
Khepera, this approach results in successful vision-based navigation,
which does not rely on optic flow. Instead, the evolved controllers sim-
ply measure the image contrast rate to steer the robot. Building upon
this result, neuromorphic controllers are then evolved for steering the
Blimp2b, resulting in efficient trajectories maximising forward transla-
tion while avoiding wall contacts and coping with unusual situations.
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6.1 Method

6.1.1 Rationale

One of the major problems faced by engineers willing to use bio-
inspiration in the process of hand-crafting artificial systems is the over-
whelming amount of details and varieties of biological models. In the
previous chapter, we selected and adapted the principles of flying in-
sects that seemed most relevant to our goal of designing autonomous
robots. However, it is not obvious that the use of optic flow as visual
preprocessing is the only alternative for these robots to navigate suc-
cessfully. Moreover, the navigation strategy using sequences of straight
movements and saccades is equally questionable. It may be that other
strategies are well adapted to the sensors, processing resources, and
dynamics of the robots.

This chapter is an attempt to let open the question of how visual
information should be processed, and what is the best strategy to ful-
fil the initial requirement of "maximising forward translation", with-
out dividing it into predefined behaviours such as course stabilisation,
obstacle avoidance, etc. (subsection 1.1.1). To achieve that, we use
the method of evolutionary robotics (ER, see description in subsection
1.2.3). This method allows to define a generic controller (neural net-
work1) containing free parameters (synaptic weights) that are adapted
to satisfy a performance criterion (fitness function) while the robot is
moving in its environment. In our application, the interest of this
method is threefold:

• It allows to fit the embedded microcontroller limitations (no float-
ing point, limited computational power) by designing adapted ar-
tificial neurons (computational units of a neural network) before
using evolution to interconnect them.

• It allows to specify the task of the robot (”maximising forward
translation”) by means of the fitness function while avoiding to
specify the details of the strategies that should be used to accom-
plish this task.

1Although other types of control structures can be used, the majority of exper-
iments in ER employ some kind of artificial neural networks because they offer a
relatively smooth search space and are a biologically plausible metaphor of mecha-
nisms that support animal behaviours (Nolfi and Floreano, 2000).
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• It takes implicitly into account the sensory constraints and dy-
namics of the robots by measuring their fitness while they are
actually moving in the environment.

The drawback of ER with respect to hand-crafting bio-inspired con-
trollers is that it requires a large amount of evaluations of randomly
initialised controllers. To cope with this issue, we first rely on the
Khepera robot (subsection 3.1.1), which is able to support any type
of random control, withstand shocks against walls, and is externally
powered (does not rely on battery). This wheeled platform allows us to
test and compare different kinds of visual preprocessing and parame-
ters of evolution. The next step consists in building upon the results
obtain on wheels to tackle the more complex dynamics of flying ro-
bots. Since the F2 airplane (subsection 3.1.1) cannot support random
control, nor has yet an accurate simulator (subsection 3.3.2), we use
the Blimp2b (subsection 3.1.2) as an intermediate flying platform that
already features much more complex dynamics than the Khepera ro-
bot. Moreover, a complete airship dynamic model has been developed
(appendix A) that enables accurate simulation and faster evolutionary
experiments.2 Since obtaining good solutions in simulation is not a
goal per se, evolved controllers are systematically tested on the real
Blimp2b at the end of the evolutionary process.

In addition to maximising forward translation, these two platforms
(Khepera and Blimp2b) enables the study of a corollary aspect of basic
navigation: “how getting out of critical situations such as facing a wall
or a corner”. This could not be tackled in the previous chapter because
(i) the F2 could not be positioned in such a situation without resulting
in an immediate crash and (ii) optic flow provides no information when
the robot is not in motion. The robots selected as testbeds in this
chapter are both able to stop and reverse their course. An interesting
question is thus whether evolved controllers can manage that kind of
critical situations and, if so, what visual cues do they use. Note that
in order to tackle this issue, there is no need for modifying the global
performance criterion of ”maximising forward translation”. It should
be sufficient to start each evaluation period with the robot in such a
critical situation. If the robot cannot quickly get out, it will not be able
to move forward during the rest of the evaluation period.

240 to 50 times faster than real-time (subsection 3.3.2).
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6.1.2 Evolutionary Process

An initial population of different individuals, each represented by its
genetic string encoding the parameters of a neural controller, is ran-
domly created. The individuals are evaluated one after the other on the
same physical (or simulated) robot. In our experiments, the population
is composed of 60 individuals. After ranking the individuals according
to their performance (using the fitness function, see subsection 6.1.4),
each of the top 15 individuals produces 4 copies of its genetic string
in order to create a new population of the same size. The individual
are then randomly paired for crossover. One-point crossover is applied
to each pair with probability 10% and each individual is then mutated
by switching the value of a bit with probability of 1% per bit. Finally,
a randomly selected individual is substituted by the original copy of
the best individual of the previous generation (elitism). This proce-
dure is referred to as a rank-based truncated selection, with one-point
crossover, bit mutation, and elitism (Nolfi and Floreano, 2000).

Each individual of the population is evaluated on the robot for a cer-
tain amount T of sensory-motor cycles (each lasting 50 to 100ms). The
length of the evaluation period is adapted to the size of the arena and
the typical robot velocity, so that individuals have a chance to experi-
ence a reasonable amount of situations. In this thesis, the length of
the evaluation period is usually within 40-120 seconds (or 400 to 2400
sensory-motor cycles). Usually, at least two evaluations are carried
out with the same individual in order to average the effect of different
starting positions on the global fitness.

This evolutionary process is handled by the software goevo (sub-
section 3.3.1), which manages the population of genetic strings, de-
codes each of them into an individual with its corresponding neural
controller, evaluates the fitness and does the selective reproduction at
the end of the evaluation of the whole population. Two operational
modes are possible (see appendix B.2 for more details). In the remote
mode, the neural controller is emulated within goevo, which exchanges
data with the robot at every sensory-motor cycle. In the embedded
mode, the neural controller is implemented within the microcontroller
of the robot and data exchange occurs only at the beginning and at the
end of the evaluation period. The remote mode allows to monitor the
internal state of the controller whereas the embedded mode ensures
full autonomy of the robot at the end of the evolutionary process.
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6.1.3 Neural Controller

An artificial neural network is a collection of units (artificial neurons)
linked by weighted connections (synapses). Input units receive sen-
sory signals and output units control actuators. Neurons that are not
directly connected to sensors or actuators are called internal units. In
its most simple form, the output of an artificial neuron yi (also called
activation value of the neuron) is a function Λ of the sum of all incoming
signals xj weighted by synaptic weights wij:

yi = Λ(
N∑
j

wijxj), (6.1)

where Λ is called the activation function. A convenient activation
function is tanh(x) because whatever the sum of the input is, the output
remains in the range [-1,+1]. This function acts as a linear estimator
in its center region (around zero) and as a threshold function in the
periphery. By adding an incoming connection from a bias unit with a
constant activation value of -1, it is possible to shift the linear zone of
the activation function by modifying the synaptic weight from this bias.

Section B.1 in appendix describes how the artificial neural network
is implemented in the 8-bit microcontroller. This embedded implemen-
tation is called PIC-NN (PIC compatible neural network). The PIC-NN is
a discrete-time, recurrent neural network, whose computation is exe-
cuted once per sensory-motor cycle. Recurrent and lateral connections
take the pre-synaptic activation values from the previous cycle as in-
put. The number of input and internal units, the number of direct
connections from input to output, and the activation of lateral and re-
current connections can be freely chosen. In all experiments presented
in this chapter, the PIC-NN has 2 internal neurons and 2 output neu-
rons, whose activation values are directly used to control the actuators
of the robot (positive values correspond to positive rotation of the mo-
tor, whereas negative values yield negative rotation). The two internal
neurons are inserted in the hope they could serve as a stage of analysis
or summary of the incoming visual input in order to provide the output
layer with more synthetic signals. Recurrent and lateral connections
are enabled only in the output layer and enable an inertia or low-pass
filtering effect on the signals driving the motors. The number of in-
put units depends on the type of sensory preprocessing, which will be
described for each experiment.

Each synapse of a PIC-NN is encoded on 4 bits (section B.1). The
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corresponding binary genetic string is thus simply composed of the
juxtaposition of the 4-bit blocks.

6.1.4 Fitness Function

The design of a fitness function for the evaluation of the individuals
is a central issue to any evolutionary experiment. In this chapter, we
employ a fitness function that is measurable using sensors available on
the robots and sufficiently simple to avoid unwanted pressure toward
specific behaviours (e.g., sequences of straight movements and rapid
turning actions near walls). The fitness is simply a measure of forward
translation.

With the Khepera, the instantaneous fitness is the average of the
wheel speeds (based on wheel encoders):

ΦKhepera(t) =

{
(vL(t) + vR(t))/2 if (vL(t) + vR(t)) > 0,

0 otherwise,
(6.2)

where vL and vR are the left and right wheel speeds, which are nor-
malised with respect to their maximum allowed rotation rate (corre-
sponding to a forward motion of 12cm/s). If the Khepera rotates on
the spot (i.e., vL = −vR), the fitness is null. If only one wheel is set to
full forward velocity, while the other one remains blocked, the fitness
reaches 0.5. When the Khepera tries to push against a wall, its wheels
are blocked by friction, resulting in null fitness.

In order to measure forward translation of the Blimp2b, we use the
anemometer located below its gondola (figure 3.2). The instantaneous
fitness is thus expressed as:

ΦBlimp(t) =

{
vA(t) if vA(t) > 0,

0 otherwise,
(6.3)

where vA is the output of the anemometer, which is proportional to
the forward speed (the direction where the camera is pointing). vA is
also normalised with respect to the maximum value obtained during
straight motion at full speed. Particular care has been taken to ensure
that the anemometer is outside the flux of the thrusters so that it does
not rotate when the blimp is pushing against against a wall. Also,
no significant rotation of the anemometer is observed when the blimp
rotates on the spot.

The instantaneous fitness values given in equations (6.2) and (6.3)
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are then averaged over the entire evaluation period:

Φ̄ =
1

T

T∑
t=1

Φ(t). (6.4)

where T is the number of sensory-motor cycles of a trial period. A
fitness of 1.0 thus corresponds to a robot moving straight forward at
maximum speed for the entire duration of the evaluation period. How-
ever, this cannot be achieved in our experimental environment (figure
3.12) where the robots must often turn to avoid walls.

6.2 Experiments on Wheels

In this section, we first apply the method with the Khepera to de-
termine whether evolution can produce efficient behaviour when the
neural controller is fed with raw vision and compare the results to the
case when optic-flow is provided instead. Then, we tackle the problem
of coping with critical situations. The results will serve as a basis for
evolutionary experiments with the Blimp2b (section 6.3).

All the experiments in this section are carried out on the Khepera
equipped with the kevopic extension turret and the frontal 1D camera
in the 60x60cm textured arena (chapter 3) . An evaluation period lasts
40 seconds (800 sensory-motor cycles of 50ms) and is repeated two
times per individual. The fitness of the two evaluation periods are then
averaged. The resulting fitness graphs are based on an average across
3 evolutionary runs starting from a different random initialisation of
the genetic strings.

6.2.1 Raw Vision versus Optic Flow

To answer the questions of whether optic flow and/or saccadic behav-
iour are required (subsection 6.1.1), two comparative experiments are
set up. In the first one, called “raw vision”, the entire image is fed to
the neural controller without any temporal filtering3, whereas in the
second, called “optic flow”, four optic flow detectors (OFDs, see sub-
section 4.2.5) serve as exclusive visual input to the neural controller
(figure 6.1). The initialisation procedure before each evaluation period
consists in a routine where the Khepera drives away from the walls for

3As opposed to optic-flow processing, which is a spatio-temporal operation (see
equations 4.5 and 4.8).
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Figure 6.1: Configuration of visual preprocessing and PIC-NN for the com-
parison between “raw vision” and “optic flow”. (a) The 50 pixels from the 1D
camera are subsampled to 25 and high-pass filtered with a rectified spatial
difference among every two neighbouring pixels. The resulting 24 values are
directly send to the 24 inputs of the PIC-NN. (b) The 48 pixels are divided into
4 regions of 12 pixels, on which the image interpolation algorithm (I2A, see
subsection 4.2.3) is applied. The optic flow detectors (OFDs) outputs are then
passed on to the 4 inputs of the underlying PIC-NN.

5 seconds using its proximity sensors (subsection 3.1.1). This avoids
to deal with the corollary question of whether evolved individuals can
manage critical situations, which will be tackled in the next subsection.

The first experiment with “raw vision” capitalises on existing results
and is directly inspired by the experiment reported by Floreano and
Mattiussi (2001), where a Khepera was evolved for vision-based nav-
igation in the same kind of textured arena. The main difference be-
tween this experiment and the one presented in this thesis concerns
the type of neural network.4 The controller used by Floreano and Mat-
tiussi (2001) was a spiking neural network emulated in an off-board
computer (remote mode, see subsection B.2)5 instead of a PIC-NN. The
idea of high-pass filtering vision before passing it on to the neural net-
work has been maintained in this experiment, although the processing

4Other minor differences concern the vision module (see Zufferey et al., 2003), the
number of pixels used (16 instead of 24), the details of the fitness function, and the
size of the arena.

5More recent experiments demonstrated the use of simpler spiking networks for
embedded computation in a non-visual task (Floreano et al., 2002). See Floreano
et al. (2003) for a review.



6.2. Experiments on Wheels 129

is done slightly differently in order to reduce computational cost.6 The
main reason for high-pass filtering visual input was to reduce depen-
dency on background light intensity.7

In the second experiment with optic-flow, the parameters remain
unchanged, except the visual preprocessing and the number of input
units in the PIC-NN. Note that the two external OFDs have exactly the
same configuration as in the optic-flow based steering experiment (see
figure 5.12). Therefore, this visual information together with a saccadic
behaviour should, in principle, be enough to steer the robot efficiently
in the experimental arena.

Results

The graph in figure 6.2a shows the population mean and best fitness
over 30 generations for the case of “raw vision”. The fitness rapidly im-
proves in the first 5 generations and then gradually reaches a plateau
of about 0.8 around the 15th generation. This means that evolved con-
trollers found a way of moving forward and avoiding to get stuck against
surrounding walls. However, the fitness value does not tell us about
the specific behaviour adopted by the robot. To answer this question,
the best evolved controller was tested and its wheel encoders recorded
in order to reconstruct the trajectory (figure 6.2b). The robot moves
along a looping trajectory, whose curvature depends on the visual in-
put.8 Note that this behaviour is not symmetrical. Evolution finds a
strategy consisting in turning always in the same direction (which can
vary from experiments to experiments) and adapting the curvature ra-
dius to exploit the available arena space. In this experiment, the best
evolved controllers always set their right wheel to full speed, and con-
trol only the left one to steer the robot. This strategy is in contrast
with the hand-crafted solution implemented in chapter 5, which con-
sisted in going straight and avoiding walls at the last moment and in
the direction opposed to the closest side.

With "optic flow" as visual input, the resulting fitness graph (fig-

6Instead of implementing a Laplacian filter with a kernel of 3 pixels [−.5 1 − .5],
here we use a rectified spatial difference of each pair of neighbouring pixels,
i.e.,|I(n)− I(n− 1)|, where n is the pixel index and I the intensity. The outcome is
essentially the same, since both filters provide a measure of local image gradient.

7Although experimental arenas are artificially lit, they are not totally protected
from natural outdoor light. Background light intensity can thus fluctuate between
day and night.

8Resulting behaviour is very similar to that obtained by Floreano and Mattiussi
(2001).
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Figure 6.2: Comparative results of the “raw vision” and “optic flow” exper-
iments. (a & c) Population mean (thin line) and best (thick line) fitness for
30 generations. Data points are averages over three evolutionary runs and
error bars are the standard deviations among those three runs. (b & d) Typ-
ical trajectory of the best individual is plotted based on data from the wheel
encoders.

ure 6.2c) displays lower maximum values than in the previous experi-
ments. The resulting trajectory (figure 6.2d) reveals that only very min-
imalist solution is found, where the robot rotates in small circles. This
is even not vision-based navigation, because visual input does not have
any influences on the constant turning radius. This strategy can still
produce a relatively high fitness of almost 0.7 because individuals were
always initialised far from the walls at the beginning of the evaluation
periods and had thus some space to move like this, independently of
their initial heading.
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Figure 6.3: Khepera rotation rate versus image contrast rate during normal
operation of the best evolved individual in its experimental arena. The contrast
rate is the spatial average of the high-pass filter output (a value of 1.0 would
correspond to an image composed exclusively of alternately black and white
pixels). The rotation rate is given by (vL− vR), where vL and vR are normalised
in the range [-1,+1].

Analysis

Evolution with optic-flow as visual preprocessing does not produce ac-
ceptable navigation strategies, although the neural controller is pro-
vided with the same kind of visual input as in subsection 5.3.2. This
can be explained by the fact that OFDs give useful information only
when the robot is moving in a particular manner (straight forward at
almost constant speed), but since the output of the neural networks
used here depend solely on the visual input, it is likely that a differ-
ent neural architecture is needed to properly exploit information from
optical flow.

In contrast, evolution with “raw vision” produces interesting results
with this simple PIC-NN. In order to understand how the visual infor-
mation could be used by the neural network to produce the efficient
behaviour, we made the hypothesis that the controller relies essentially
on the contrast rate present in the image (a spatial sum of the high-
pass filtered image). To test this hypothesis, we plotted the rotation
rate (vL − vR) as a function of the spatial average of the visual input
(after high-pass filtering) over the entire field of view (FOV) while the
individual was freely moving in the arena. The resulting graph (figure
6.3) shows that an almost linear relation exists between the contrast
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rate over the entire image and the rotation rate of the Khepera. In other
words, the robot tends to move straight when a lot of contrast is present
in the image, whereas it increases its turning rate as soon as less con-
trast is detected. The dispersion of the points in the right part of the
graph shows that the processing of this particular neural network can
not be fully explained by this strategy. In particular, it is likely that
some parts of the image are given more importance than other ones
in the steering process. However, this simple analysis reveals the logic
of the evolved strategy, which can be summarised as follows: “move
straight when contrast rate is high, and increase turning rate linearly
with decreasing contrast rate” (see the thick gray lines in figure 6.3).

In summary, rather than relying on optic flow and symmetrical sac-
cadic obstacle avoidance, the successful controllers employ a purely
spatial property of the image (the contrast rate) and produce smooth
trajectories to circumnavigate the arena only in one direction.

6.2.2 Coping with Critical Situations

This subsection tackles the issue of the critical situations occurring
when the robot is facing a wall (or a corner) by adopting a set of addi-
tional precautions during the evolutionary process. At the same time,
we build upon the previous results in order to decrease the number of
sensory input to the PIC-NN. This should allow to decrease the size of
the genetic string and accelerate the evolutionary process.

Additional Precautions

In order to force individuals to cope with critical situations without
fundamentally changing the fitness function, a set of three additional
precautions are taken:

• Instead of driving the robot away from walls, the initialisation pro-
cedure places them against a wall by driving them straight forward
until one of the front proximity sensor becomes active.

• The evaluation period is prematurely interrupted (after 5 seconds)
if the individual has not reached at least 10% of the maximum
fitness (i.e., 0.1) at that time.

• The instantaneous fitness function Φ(t) is set to zero whenever a
proximity sensor (which have a limited range of about 1-2 cm) is
active.
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Visual Preprocessing

Since individuals evolved with access to the entire image mainly relied
on global contrast rate in the image (see analysis in subsection 6.2.1),
here we deliberately divide the image into 4 regions evenly distributed
and compute the contrast rate over each of them before feeding the
neural controller with the resulting values (figure 6.4). We call con-
trast rate detector (CRD) this kind of preprocessing associated with its
corresponding image region. Since the high-pass spatial filtering is a
kind of edge enhancement, the output of such a CRD is essentially
proportional to the number of edges seen in the image region. This
preprocessing allows to reduce the size of the neural network with re-
spect to the “raw vision” approach and thus limit the search space of
the genetic algorithm9. Since the additional precautions make the task
more complex, the reduction of the search space is not expected to yield
significant acceleration in the evolutionary process. However, this will
help to maintain the number of required generations to a reasonable
amount.

9The genetic string encoding the PIC-NN measures 80 bits instead of 240 bits in
the “raw vision” experiment.
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Results

The resulting fitness graph (figure 6.5a) is similar to the one of the “raw
vision” experiment (figure 6.2a). Although progressing slightly slower
in the first generations, the final maximum fitness values of 0.8 after
30 generations are identical. The increased difficulty of the task due
to the additional precautions is indicated by the fitness graph by the
lower average fitness over the population (approx. 0.35 instead of 0.5).

The genetic algorithm found a way of coping with the new set of pre-
cautions in spite of the limited number of sensory inputs. In order to
better demonstrate the higher robustness obtained in this experiment,
the typical trajectories of the best evolved individuals of different evolu-
tionary runs are plotted with the Khepera starting against a wall (and
facing it). We observe a number of different behaviours that produce
the same average fitness values. In all cases, the individuals manage
to quickly escape from the critical starting position, either by back-
ing away from the wall (figure 6.5b-c) during a short period of time
(roughly 2 seconds) or rotating on the spot until finding a clear path
(figure 6.5d). Once escaped, they quickly recover a preferred trajectory
yielding high fitness. The behaviours can either consist of navigating in
large circles and slightly adapting the turning rate when necessary (fig-
ure 6.5b), or moving in straight segments and steering only when close
to a wall. In this latter case, the individuals either describe smooth
turns (figure 6.5c) or on-the-spot rotations (figure 6.5d). The individu-
als that rotate on the spot when facing a wall exploit the same strategy
in order to avoid collisions later on.

Those results demonstrate that a range of possible strategies ex-
ist, which equally fulfil the basic requirement of “maximising forward
translation” even if the starting position is critical (i.e., requires spe-
cific behaviour that is not always used afterwards). Rather than using
optic-flow, those strategies rely on spatial properties (contrast rate) of
the visual input.

6.3 Aerial Experiments

A preliminary set of experiments entirely carried out on a physical
blimp (Zufferey et al., 2002) indicated that artificial evolution can gen-
erate, in about 20 generations, neuromorphic controllers able to drive
the Blimp1 (ancestor of the current Blimp2b, less manoeuvrable due
to another arrangement of the thrusters and not equipped with a gyro-
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Figure 6.5: Results of the evolutionary experiment with the Khepera using 4
contrast rate detectors and coping with critical starting situations. (a) Popu-
lation mean (thin line) and best (thick line) fitness for 30 generations. Data
points are averages over three evolutionary runs. (b-d) Typical trajectories of
the best individuals of the 3 runs. The Khepera (black circle with the white
arrow indicating the forward direction) is always placed perpendicularly fac-
ing a wall at the beginning to demonstrate its ability to get rapidly out of this
difficult situation. A dotted trajectory line indicates backward motion.

scope) around the textured arena. The obtained strategies largely re-
lied on contacts with walls to stabilise the course of the blimp in order
to gain forward speed. Later on, a redesigned platform (Blimp2, very
similar to the Blimp2b) equipped with a yaw gyroscope (which output
was passed on to the neural controller) produced smoother trajectories
without using the walls for stabilisation (Floreano et al., 2005). Those
evolutionary runs carried out directly on the physical flying robots were
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rather time-consuming. Only 4 to 5 generations could be evaluated in
1 day (the battery had to be changed every 2-3 hours) and more than 1
week was required to obtain successful controllers. Additionally, some
runs had to be cancelled because of mechanical problems such as mo-
tor deficiencies.

After these preliminary experiments, the simulator (subsection
3.3.2) has been developed in order to accelerate and facilitate the evo-
lutionary runs. In contrast to previous experiments with Blimp1 and
Blimp2, here we present experiments with the Blimp2b where

• evolution is entirely performed in simulation and only the best
evolved controllers are transfered to the real robot,

• the same set of precautions as developed with the Khepera (sub-
section 6.2.2) are used to force individuals to cope with critical
situations (facing a wall or a corner),

• a set of virtual10 proximity sensors are used during simulated evo-
lution to set the instantaneous fitness to zero whenever the blimp
is close to the wall (part of the above-mentioned precautions).

This section is divided into two parts. First the results obtained in sim-
ulation are presented, then the transfer of the best evolved individual
to reality is described.

6.3.1 Evolution in Simulation

The neural controller is evolved in order to steer the Blimp2b in the
square arena (figure 3.12d) using only visual and gyroscopic informa-
tion available from on-board sensors.11 As for the latest experiment
with the Khepera (subsection 6.2.1), visual input is preprocessed with
4 CRDs, which feed the PIC-NN (figure 6.6). In addition, the pixel in-
tensities coming from the 1D camera are binarised. Since the visual
surrounding both in simulation and reality is black and white, thresh-
olding the image allows to ensure a better match among the two worlds.

Since one of the big differences between the Khepera and the
Blimp2b is the need for course stabilisation (CS, see table 3.2), the

10We call “virtual” a sensor that is only implemented in simulation, but does not
exist on the real robot.

11In these experiments, altitude is not under evolutionary control, but is automat-
ically regulated using information from the distance sensor pointing downward (see
subsection 3.1.2).
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Figure 6.6: Left: Outline of the Blimp2b sensory inputs and actuators. Right:
Neural network architecture and vision preprocessing.

yaw gyroscope output is also provided to the neural controller. This
additional sensory information is sent to the PIC-NN via an input unit,
which is directly connected to the output neurons. One of the moti-
vation for this direct connection is that we know from chapter 5 that
a simple proportional feedback loop connecting the gyroscope to the
rudder of the airplane is enough to provide course stabilisation.

The PIC-NN has thus 4 visual input units connected to the internal
layer, 1 gyroscopic input unit directly connected to the output layer, 2
internal neurons, and 2 output neurons, which control the frontal and
yaw thrusters (figure 6.6). The PIC-NN is updated every sensory-motor
cycle, which lasts 100ms in reality.12 The evaluation periods last 1200
sensory-motor cycles (or 2 minutes real-time).

As for the latest experiment with the Khepera robot (subsection
6.2.2), a set of additional precautions are taken during the evolution-
ary process in order to evolve controllers capable of moving away from
walls. The 8 virtual proximity sensors (figure 3.11) are used to set the
instantaneous fitness to zero whenever the Blimp2b is less than 25cm
from a wall. In addition, individuals that display poor behaviours (less
than 0.1 fitness value) are prematurely interrupted after 100 cycles (10
seconds).

12A longer sensory-motor cycle than with the Khepera is chosen here, primarily
because the communication through the radio system adds some delays. In embed-
ded mode (without monitoring of parameters; see subsection B.2), the sensory-motor
cycle could easily be ten times faster.
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Results

Five evolutionary runs were performed, each starting with a different
random initialisation. The fitness graph (figure 6.7a) displays steadily
increase until the 40th generation. Note that it is far more difficult
for the Blimp2b than for the Khepera to approach a fitness value of
1.0 because of inertia and drag effects. However, all five runs pro-
duced efficient behaviours in less than 50 generations to navigate in
the room in the forward direction while actively avoiding walls. Fig-
ure 6.7b illustrates the typical preferred behaviour of the best evolved
individuals. The circular trajectory is almost optimal from a velocity
point of view, because the circle fits well the available space (the back
of the blimp sometimes gets very close to a wall without touching it).
Evolved robots do not turn sharply to avoid walls, probably because
that would cause a speed loss. The fact that the trajectory is not cen-
tered in the room is probably due to the spatial frequency discrepancy
between walls (two walls feature less vertical stripes than the two oth-
ers). The non-zero angle between the heading direction of the blimp
(indicated by the small segments) and the trajectory indicates that the
simulated flying robot is always side-slipping and thus evolved con-
trollers must take into account the quite complex dynamics by partly
relying on air drag to compensate for the centrifugal force.

In order to further assess the wall-avoidance capability of the
evolved robots, we artificially reduced the size of the room (another nice
feature of the simulation) and tested the same best individual in this
new environment. The blimp modified its trajectory into a more elliptic
one (figure 6.7c, moving close to the walls without touching them. In
another test, when the best individual is deliberately put against a wall
(figure 6.7d), it reverses its front thruster, backing away from the wall
while rotating in order to recover its preferred circular trajectory. This
behaviour typically results from the pressure exerted during evolution
by the fact that individuals could be interrupted prematurely if they do
not gain some fitness during the first 10 seconds. They are therefore
constrained to find an efficient strategy to get out from whatever initial
position (even at the expense of a backward movement, which obvi-
ously brings no fitness points) in order to quickly resume the preferred
high-speed trajectory.
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Figure 6.7: Results in simulation. (a) Average fitness values and standard de-
viations, over a set of five evolutionary runs, of the fittest individuals of each
generation. (b) Top-down view of the typical trajectory during 1200 sensory-
motor cycles of the fittest evolved individual. The black continuous line is
the trajectory plotted with a time resolution of 100ms. The small segments
indicate the heading direction every second. Light-gray ellipses represent the
envelope of the blimp also plotted every second. (c) Trajectory of the fittest
individual when tested for 1200 sensory-motor cycles in a room that has been
artificially shrunk by 1.5m. (d) When the same best individual is started
against a wall, it first reverses its front thruster while quickly rotating clock-
wise before resuming its preferred behaviour. The ellipse surrounded by the
bold black line indicates the starting position. The following ones with black
outline indicate the blimp envelope when the robot is in backward motion. Ar-
rows indicate the longitudinal orientation of the blimp, irrespective of forward
or backward movement.
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6.3.2 Transfer to Reality

When the best evolved neuromorphic controller is tested on the physi-
cal robot (without further evolution), it displays almost identical behav-
iour.13 Although we cannot measure the exact trajectory of the blimp
in reality (the room being not high enough for filming from above), the
behaviour displayed by the robot in the 5x5m arena is qualitatively
very similar. The Blimp2b is able to quickly drive itself on its preferred
circular trajectory, while accurately avoiding contact with the walls.

The fitness function can be used as an estimate of the quality of
transfer. A series of comparative tests were performed with the best
evolved controller, in simulation and reality. For these tests, the vir-
tual proximity sensors are not used because they do not exist in reality.
As a result, the instantaneous fitness is not set to zero when the blimp
is close to walls, as it is the case during evolution in simulation. There-
fore, the fitness values should be expected to be slightly higher than
those shown in the fitness graph of figure 6.7a. The best evolved con-
troller was tested 10 times in simulation and 10 times in reality for
1200 sensory-motor cycles. The results of these test, which are plotted
in figure 6.8, show that controllers evolved in simulation obtain very
similar performance when assessed on the real robots.

In order to further check the correspondence between simulated and
real robot, we compared signals from the anemometer, the gyroscope
and the actuators between simulation and reality, while the Blimp2b
moves away from a wall. Those signals provide an estimation of the be-
haviour displayed by the robot. The Blimp2b was thus started facing a
wall, as shown in figure 6.7d, both in simulation and in reality. Figure
6.9 shows the very close match between signals gathered in reality and
those recorded in the same situation in simulation. At the beginning,
the front thruster is almost fully reversed while a strong yaw torque is
produced by the yaw thruster. These actions produce the same incre-
ment in rotation rate (detected by the gyroscope) and a slight backward
velocity (indicated by negative values of the anemometer), both in re-
ality and in simulation. After approximately 3 seconds, the blimp has
almost finished the back-and-rotation manoeuvre and starts a strong
counter-action with the yaw thruster to cancel the rotational move-
ment, thus resulting in a noticeable decrease of gyroscope output. Af-
ter that, the robot accelerates forward (as shown in the anemometer

13Video clips of simulated and physical robots under control of the same evolved
neural controller are available at http://phd.zuff.info.
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Figure 6.8: Performance from simulation to reality with the same controller.
Fitness results of 10 trials of the best evolved individual, left in simulation,
right in reality.

graph) to recover its preferred circular trajectory (as revealed by the
almost constant, though not null, gyroscope values). Slight discrep-
ancies among signals from simulation and reality can be explained by
differences in the starting position implying slightly different visual in-
puts, inaccuracies in sensor modelling, and omitted higher order com-
ponents in the dynamic model (appendix A).

6.4 Summary and Discussion

In this chapter, we have been interested in exploring alternative strate-
gies to vision-based steering. We decided to use an evolutionary robot-
ics (ER) approach because it can implicitly take care of the constraints
related to the robot (sensors, processing power, dynamics), without im-
posing a specific manner of processing sensory information, nor forc-
ing a pre-defined behaviour for accomplishing the task (maximising
forward translation).

Artificial evolution was used to develop a neural controller mapping
visual input to actuator commands. With the Khepera robot, evolved
individuals display efficient strategies to navigate in the square tex-
tured arenas without relying on optic flow. The strategies are based on
contrast rate, which is a purely spatial property of the image. When the
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Figure 6.9: Comparison of thruster commands and sensor values between
simulation and reality when the best evolved individual is started facing a
wall, as shown in figure 6.7.d. Thruster values are normalised with respect
to full range; anemometer output is normalised with respect to maximum for-
ward velocity; gyroscope data is normalised with respect to maximum rotation
velocity. Note that already after 4 seconds, the robot starts to accumulate fit-
ness since the anemometer is measuring forward motion (during evolution 10
seconds were allowed before interruption due to poor fitness).

same neural controller was explicitly fed with optic-flow, evolution did
not manage to find efficient strategies probably because optic-flow re-
quires more complex coordination between motion and perception than
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what could be achieved with the simple neural network we employed.
When applied to the Blimp2b, artificial evolution found an efficient

way of stabilising the course (CS) and steering the robot so to avoid
obstacles (OA), also relying on contrast rate. Additionally, evolved in-
dividuals are capable of recovering from critical situations, where it is
not possible to simply move forward to get high fitness score.

The evolved neural controllers can operate without any external
computer, which is only required during the evolutionary process in
order to manage the population of genetic strings.

Comparison with Hand-crafting of Bio-inspired Control Systems

When using ER, the role of the designer is limited to the realisation
of the robot (which yield a number of implicit constraints such as dy-
namics and sensor limitations), the implementation of the controller
building blocks (in our case artificial neurons), and the design of a
fitness function. The evolutionary process will then try and find the
controller configuration that best meets all these constraints. The re-
sulting strategies can be interesting to analyse. In our case, we learnt
that image contrast rate is a usable visual cue to drive our robots in
the experimental arenas.

However, it is, in some sense, a minimalist solution that will work
only under the same conditions as those existing during evolution. In
particular, the individuals will fail as soon as the average spatial fre-
quency of the surrounding texture is modified. In contrast, the optic-
flow-based solution developed in chapter 5 has been designed to be
insensitive to pattern frequency. Also, the asymmetrical evolved be-
haviour will perform less efficiently in an elongated environment (e.g.,
a corridor) whereas the symmetrical obstacle avoidance strategy of the
F2 airplane will alternatively provoke a saccade to the left and to the
right. To tackle those issues, it would be possible to change the en-
vironmental properties during evolution, but this would require longer
evolutionary runs and probably more complex neural networks.

A significant drawback of ER with respect to hand-crafting bio-
inspired controllers is that it requires a large amount of evaluations
of randomly initialised controllers. To cope with this issue, either the
robot must be capable of supporting such controllers and recovering at
the end of every evaluation period, or the use of an accurate, physics-
based simulator is inevitable. The development of such a simulator
may be quite difficult depending on the dynamics of the robot, the
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complexity of the environment, and the type of sensors employed.14

Evolutionary Approach and Fixed-wing Aircraft

Airplanes such as the F2 would not support an evolutionary run per-
formed on the physical robot for three reasons. First, it is not robust
enough to withstand repeated collisions with the walls of the arena.
Second it cannot automatically initialise itself in a good (airborne) pos-
ture at the beginning of every evaluation period. Third, it has a very
limited energetic autonomy (about 20-30 minutes). The only solution
to apply the evolutionary approach to such an airplane is be to develop
an accurate flight simulator. However, this is more difficult than with
an airship because under the control of a randomly initialised neural
controller the airplane will not only fly in its standard regime (near
level flight at reasonable speed), but also in stall situations, or high
pitch and roll angles. Such non-standard flight regimes are difficult to
model since unsteady-state aerodynamics plays a predominant role.

To cope with this issue, some precautions can be envisaged. For
instance, it is conceivable to initialise the robot in level flight with
its nominal velocity and prematurely interrupt the evaluation period
whenever some parameters (such as pitch and roll angles, and velocity)
leave a predefined range where the simulation is known to be accu-
rate. This will also force the individuals to fly the plane in a reasonable
regime.

Other problems related to simulation-reality discrepancies could be
approached with other techniques. Incremental evolution consisting
in pursuing evolution in reality for a short amount of generations (see
Harvey et al., 1994 or Nolfi and Floreano, 2000, section 4.4) could be
a first solution, although a human pilot would probably be required to
initialise the aircraft and rescue it whenever the controller fails. More-
over, the procedure could be very time-consuming and risky for the
robot. The second approach consists in using some sort of synaptic
plasticity in the neural controller. Exploitation of synaptic adaptation
has been shown to support fast self-adaptation to changing environ-
ments (Urzelai and Floreano, 2001).

14See Nolfi and Floreano (2000) for a detailed discussion about the use of simulation
in ER.
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Outlook

In this thesis, artificial evolution was used exclusively to set the synap-
tic strength of a simple neural network. However, artificial evolution
in simulation could be used to explore architectural issues such as
airframe shape (provided that the simulator is able to infer the effects
on the dynamics) or sensor morphology (Cliff and Miller, 1996; Huber
et al., 1996; Lichtensteiger and Eggenberger, 1999). For instance, posi-
tion and orientation of simple vision sensors could be left to evolution-
ary control and the fitness function could put some pressure toward the
use of a minimum number of sensors. Ultimately, artificial evolution
could also allow to explore higher order combinations of behaviours
(taking-off, flying, avoiding obstacles, going through small apertures,
looking for food, escaping predators, landing, etc.), for which we still
know so little in insects.





Chapter 7

Concluding Remarks

I see insect level behavior as a noble goal for artificial in-
telligence practitioners. I believe it is closer to the ultimate
right track than are the higher level goals now being pur-
sued.

R.A. Brooks (1986)

7.1 Main Achievements

Inspired by flying insects, we demonstrated autonomous steering of
a 30-gram indoor airplane using only visual and gyroscopic sensors.
The signal processing and control are entirely computed on-board the
plane, despite its very limited payload of approximately 6g. This ap-
plication forced us to develop ultra-light optic-flow detectors and to fit
the algorithms (optic flow detection and airplane control) in a tiny 8-bit
microcontroller running at 20MHz. The entire software running on the
airplane uses less than 20kB of program memory. In flight, the air-
plane consumes less than 2W, which is 30 times less than a desk light
or 50 times less than a small hobby helicopter. Our other flying plat-
form, the blimp, allowed us to use an evolutionary technique in order to
develop vision-based neural controllers also running in the embedded
microcontroller. The blimp requires only 1W to autonomously circum-
navigate the experimental arena while avoiding collisions.

One of the main outcomes of this thesis is the insight gained on how
to link simple visual features (such as local optic-flow patterns or con-
trast rate) to motor commands in order to obtain efficient behaviours
with lightweight and dynamic robots featuring limited computational
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resources. Some of the problems arising when optic-flow is used in ab-
sence of contact with an inertial frame (no odometry, unstable motion)
have been solved by merging gyroscopic information to vision. The re-
sults of the evolutionary experiments showed that optic flow is not the
only way of processing monocular visual information for course control
and obstacle avoidance. Although the evolved contrast-rate solution
cannot be generalised to other environments as easily as an optic-flow-
based strategy, it represents an efficient alternative, which requires
even less computational power.

Although the primary purpose of this project was to engineer indoor
autonomous flyers, the size, energy, and computational constraints of
the robotic platforms encouraged us to look at mechanisms and prin-
ciples of flight control exploited by insects. Our approach to developing
autonomous vision-based flying robots has been inspired by biology at
different levels: low-resolution insect-like vision, information process-
ing, behaviours, neural networks, and artificial evolution. In doing so,
we have, in some sense, contributed to test different biological models,
in particular with the demonstration that an artificial "flying insect"
could steer autonomously over a relatively long period of time. In this
regard, this thesis is an illustration of the synergistic relationship that
can exist between robotics and biology.

7.2 Potential Applications

This work can be of great help in automating very light flying devices
such as those presented in subsection 1.2.1, which feature the same
kind of properties as our flying platforms: complex dynamics due to
the absence of contact with an inertial frame, limited payload and re-
stricted computational power. Distance sensors are not a viable solu-
tion in such cases, and visual and gyroscopic sensors are probably the
best alternative to provide such robots with basic navigational skills.
This seems to be acknowledged by the micromechanical flying insect
(MFI) team in Berkeley, who is currently working on a sensor suite
for their 25mm flapping robot (figure 1.2). Although obstacle avoid-
ance has not yet been tackled, preliminary work toward attitude con-
trol relies on visual (ocelli-like) and gyroscopic (halteres-like) sensors
(Wu et al., 2003; Schenato et al., 2004).

More generally, the approach proposed in this thesis can provide
low-level navigation strategies for all kinds of mobile robots featuring
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small size and non-trivial dynamics. It can equally be useful in a num-
ber of situations where the environment is unknown (no precise maps
are available) and the use of GPS is not possible, which is the case
for example in indoor environments, underwater, or in planetary explo-
ration, especially if the robot has to move close to the relief or in clut-
tered environments that are difficult to reconstruct with range finders.
This could also be useful for UAVs or MAVs flying at low altitude in
urban or natural environments, where buildings, trees, hill, etc. may
be present and a fast collision avoidance system is required (Mueller,
2001).

Beyond the application of vision-based navigation strategies to mo-
bile robots, the use of small indoor flying systems as biological tools
can be envisaged. As indicated in the introduction, more and more
biologists are assessing their models with mobile robots. However, un-
til now, the used robotic platforms were only terrestrial vehicles (e.g.,
Srinivasan et al., 1998) or tethered systems (e.g., Reiser and Dickinson,
2003; Ruffier, 2004). An indoor flying platform with visual sensors and
the ability to fly at velocities close to the one reached by flies (1-3m/s)
potentially provides a great testbed for assessing models of visually
guided behaviours in free flight. The fact that our aerial robots are
small, resistant to crash and fly indoor, further eases the testing phase
and alleviates the need of large technical teams.

7.3 Future Directions

Unlike tethered or simulated aircrafts, free-flying physical systems can-
not readily know their position and orientation, which is highly desir-
able for analysis purposes during the testing phase. In the future,
some efforts should be put in the development of an off-board position-
ing system functioning without any heavy or energy consuming parts
on the robots. It is probable that a tracking system relying on several
ground-based cameras represents a good option. Such a system would
also be of great help in assessing and fine tuning a flight simulator.
It would allow to compare trajectories obtained in reality to those ob-
tained in simulation when the the same actuator commands are issued
to the airplane.

Another issue that must be tackled is autonomous flight in uncon-
strained indoor environment. In order to reach that goal, more atten-
tion will be needed at the level of the visual sensors. Two challenges
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have to be addressed. First, the intensity changes among different
rooms (some receiving direct sun light and others having only artificial
lighting) might be enormous. Second, it may happen that parts of the
visual surroundings have absolutely no contrast. If the vision system
samples the field of view only in few areas (like it is currently the case
with our robots) it will provide no usable signals in those situations.

To cope with those issues while maintaining an overall low weight
and low power consumption is a challenge that might be addressed
with aVLSI1 neuromorphic visual sensors (Liu et al., 2003) in place of
using classical CMOS cameras. The neuromorphic technology provides
a circuit-design approach to the possibility of implementing certain
natural computations more efficiently than standard logic circuits. The
resulting chips usually consumes at least 10 times less power than an
equivalent implementation with CMOS imagers and digital processor.
More specifically appealing for tackling the problem of background light
fluctuations is the existence of adaptive photoreceptor circuits (Del-
brück and Mead, 1995) that automatically adapt to background light
over very large intensity range (more than 6 decades). Those photore-
ceptors can be used as front-end to optic-flow detector circuits fitted
on the same chip (e.g., Kramer et al., 1995). This technology also pro-
vides the potential for widening the field of view in arranging pixels and
optic-flow circuits as desired on a single chip, while consuming less en-
ergy and computational power than if the same functionality had to be
achieved with standard CMOS sensors and vision processing in a mi-
crocontroller. As an example, Harrison (2003) presented an aVLSI chip
for imminent collision detection based on the STIM model (subsection
2.3.3).

Finally, the science fiction of an artificial flying insect buzzing
around your office, suddenly deciding to escape through the door and
managing to reach your colleague’s room is a futuristic scenario that
this thesis humbly contributes to bring closer to reality.

1Analog Very Large Scale Integration.



Appendix A

Dynamic Modelling of Indoor
Airships

In this appendix, a generic dynamic model for indoor airships (blimps)
is presented together with a pragmatic methodology for parameter iden-
tification. This theoretical work1 has been applied to the Blimp2b (sub-
section 3.1.2) to provide our robotic simulator (subsection 3.3.2) with
an accurate dynamic modelling featuring good correspondence between
reality and simulation (see, e.g., subsection 6.3.2).

The dynamic modelling is generic to indoor airships with a hull
shape that can be approximated by an ellipsoid of revolution. The
steering of the airship is assumed to be done by means of thrusters
(e.g., a DC motor with a propeller), whose number, orientation and lo-
cation can be freely chosen. The typical maximum velocity of such
aerial vehicles is around 1m/s and their length is usually in the range
of 1 to 5m. The hull and gondola distortions are assumed to be small
and to have negligible impact on trajectory, allowing to approximate
the whole airship as a rigid body. The airship has two vertical planes of
symmetry, with the center of gravity (CG) and the center of buoyancy
(CB) located in their intersection. These assumptions generally apply
well to such kinds of small airships with inflated envelope and light-
weight gondola. Fortunately, they generate significant simplifications
in the equation of motion and allow easier parameter identification.

In order to describe the motion of the airship in the 6 degrees of
freedom (DOF) and the forces and moments acting on it, we define
two reference frames: an earth inertial reference frame FE and a body-
fixed frame FB (figure A.1). The origin of FE is an arbitrary point on

1This work has been carried out together with Alexis Guanella during his diploma
project (Guanella, 2004).



152 Chapter A. Dynamic Modelling of Indoor Airships

F

F

x

y

z

x

y

z

CB

CG

E

B
E

E

E

forwardr

ω

ω

ω

x

yz

Figure A.1: Inertial frame and body-fixed frame.

Earth’s surface, whose acceleration is neglected. Note that the zE-axis
is pointing downward. The origin of the body-fixed frame FB is the
center of buoyancy CB, which corresponds to the center of the hull.
Its orientation coincides with the orientation of the airship and its axes
correspond to principal axes of the rigid body. The center of gravity CG
is located by the vector r = (0, 0, rz)

T in FB.
Translational and rotational velocities ν := (vT ,ωT )T =

(vx, vy, vz, ωx, ωy, ωz)
T are described in the body-fixed frame FB, whereas

the position and orientation of the vehicle η := (xE, yE, zE, φ, θ, ψ)T are
expressed in the inertial frame FE. Note that the last 3 terms of η are
the aeronautical Euler angles, namely roll φ, pitch θ, and yaw ψ.

The Newton-Euler equation of motion links the acceleration of the
airship with the forces and moments acting on it. This non-linear equa-
tion is written using a vector representation for 6 DOF in the body-fixed
frame FB:

Mν̇ =
∑

Fexternal = FR + FP + FD + FC , (A.1)

where the five main elements are listed below, following the order in
which they will be presented:

FR: restoring forces (section A.1) containing gravity and buoy-
ancy, which counteract each other and are responsible for
maintaining the airship upside up;

FP : propelling forces (section A.2), which are directly related to
motor commands;

FD: damping forces (section A.3) due to air friction;
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M: inertia matrix (section A.4) containing rigid-body inertia
and added mass terms;

FC: Coriolis and centripetal effects (section A.5), which are fic-
titious forces appearing in non-inertial frames such as FB.

The presentation order of those elements is motivated by both the iden-
tification process, which sometimes requires the value of previous com-
ponents to be determined first (e.g. propelling thrusts are needed for
the measurement of damping forces), and the fact that we use the in-
ertia matrix as a basis for the derivation of the Coriolis matrix (section
A.5).

A.1 Restoring Forces

Airships counteract gravity by some lift capability. Unlike airplanes,
the aerostatic lift force (buoyancy) acting on an airship is independent
of flight speed. The buoyant force is explained by Archimedes’ principle
and is equal to the mass of the volume of air displaced by the airship.
Gravity and buoyancy together are called restoring forces since they
are responsible for keeping the airship upside up. The amplitudes of
these forces are expressed by:

Fg = mg and Fb = ρV g, with V =
4

3
πab2, (A.2)

where g is the Earth’s gravitational acceleration, ρ is the air density,
and V the volume of the hull, which is an ellipsoid of revolution with
semi-axes a, b and b (with a > b). Both restoring forces are always
parallel to the zE-axis and the yaw angle ψ does not appear in the
modelling of this phenomenon, which is expressed in the body-fixed
frame FB in the following form:

FR(η) =



−(Fg − Fb) sin(θ)

(Fg − Fb) cos(θ) sin(φ)

(Fg − Fb) cos(θ) cos(φ)

−rzFg cos(θ) sin(φ)

−rzFg sin(θ)

0


. (A.3)

The only non-trivial parameter to identify at that point is rz, namely
the distance between CB and CG. In order to measure rz, instead of
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Figure A.2: Procedure for the localisation of the center of gravity.

computing it based on the repartition of every masses on the body,
we rather propose to temporarily modify the mass distribution along
the x-axis while the airship is airborne and to measure the resulting
static pitching angle. It is often easy to do so by displacing a part of the
ballast, say with a mass of m1, along the x-axis, at a distance x1 from CB
(figure A.2). Then the resulting pitching angle θ1 allows for deriving rz

using the following formula based on simple geometric considerations:

rz =
m1

m

x1

tan(θ1)
. (A.4)

A.2 Propulsion

In our model, engines are assumed to be ideal thrusters applying
forces, whose amplitudes are specified by the motor commands, and
neither propeller fluxes nor motor torques are taken into account.
Therefore, the propulsion matrix FP depends only on motor commands
and the location and orientation of the engines. Since the thrusters are
moving with FB, it is straight forward to express the resulting forces
and torque in the body-fixed frame. The identification procedure is
thus limited to the determination of the thrust amplitude as a func-
tion of motor commands. To that end, we simply propose to measure
thrust for each engine. The outcome of this experiment will then be
used to construct a look-up table where corresponding forces will be
found whenever a motor command is issued.

A.3 Damping

Aerodynamic damping is due to air friction, which is a function of ve-
locity. In general, there are two different regimes that can be distin-
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Figure A.3: Identification of damping coefficients.

guished: linear friction due to laminar boundary layers and quadratic
friction due to turbulent boundary layers. Since it is difficult to know in
advance in which regime the airship is operating, we model the damp-
ing as a Taylor series where the terms higher than second order are
neglected.

FD = D(ν)ν, with D(ν) = −diag



Dvx +Dv2
x
|vx|

Dvy +Dv2
y
|vy|

Dvz +Dv2
z
|vz|

Dωx +Dω2
x
|ωx|

Dωy +Dω2
y
|ωy|

Dωz +Dω2
z
|ωz|


, (A.5)

where D(ν) is the damping matrix, Dvx, Dvy , Dvz , Dωx, Dωy , Dωz are
the linear damping coefficients, and Dv2

x
, Dv2

y
, Dv2

z
, Dω2

x
, Dω2

y
, Dω2

z
the

quadratic damping coefficients. Note that this uncoupled model of
damping is a rough approximation that works sufficiently well in the
case of low speed and highly symmetrical ellipsoid hull (Fossen, 1995).

It is possible to identify the 12 damping coefficients by measuring
stationary velocities reached by the airship subjected to different con-
stant forces. For instance, a known thrust FPx is applied in the forward
direction by means of one or several engines with constant thrust (fig-
ure A.3). When the blimp reaches a constant forward velocity, inertial
and Coriolis effects are null and the following extract of the equation
of motion can be used to reveal the two damping coefficients related to
the x-axis:

FPx −Dvxvx −Dv2
x
v2

x = 0, with vx > 0. (A.6)

This experiment must be run for different values of FPx, which can
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be known from section A.2 and the related constant velocities vx can
be measured using a stopwatch while the airship is travelling along a
known distance. Then the linear and quadratic damping coefficients
are determined such that the curve vx(FPx) defined by equation (A.6)
best fits the experimental data.

The same method is used for the y and z-axes. In some cases how-
ever, the airship might not be equipped with engines for lateral motion.
As a consequence, this method cannot be applied and lateral damp-
ing coefficients should rather be approximated from the vertical ones.
This is possible because of the symmetric hull: Dvy=̃Dvz and Dv2

y
=̃Dv2

z
.

Concerning rotational coefficients, the same approach can be followed,
at least for Dωz and Dω2

z
. The airship must be accelerated around the

yaw axis using a constant thrust until it reaches a stationary velocity,
which can be measured by counting the number of revolutions per time
unit.

Since airships are rarely designed to make full rolling or pitch-
ing movements, the same procedure cannot be applied to pitch and
roll damping coefficients. Even if such movements were possible, the
restoring effect would prevent a simple modelling like in equation (A.6).
Fortunately, for the pitch axis, the same considerations as above hold
and we have Dωy=̃Dωz and Dω2

y
=̃Dω2

z
. For the roll axis, the damping co-

efficiants Dωx and Dω2
x

are definitely very close to zero since the cross
section is comparable to a circle. However, if they are put to zero, the
simulated airship will always oscillate about this axis. A crude estima-
tion would be to use values around half the ones obtained for the yaw
axis2.

A.4 Inertia

Using the same notations as in (Fossen, 1995), the rigid-body inertia
matrix can readily be written as follows:

2If damping in rolling and pitching behaviours are important for a particular ex-
periment (which is not our case), one could envisage a more complex identification
procedure that would consist in letting the airship oscillate around those axes (sim-
ilar to the experiment proposed in the following section) and analyse the movement,
e.g., with a laser mounted in the gondola and pointing downward to the lab floor, but
this is out of the scope of this appendix.



A.4. Inertia 157

MRB =

(
mI3×3 −mS(r)

mS(r) IRB

)
, with S(a) :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (A.7)

where m is the mass of the airship, I3×3 is the identity matrix, S is the
skew-symmetric matrix operator (a ∈ R3) and IRB is the inertia tensor
with respect to CB. Taking into account that the axes of FB are the
principal axes yields a diagonal inertia tensor. Further simplification
can be made by recalling that, in our case, r = (0, 0, rz)

T . Finally, explicit
description of the rigid-body inertia matrix yields:

MRB =



m 0 0 0 mrz 0

0 m 0 −mrz 0 0

0 0 m 0 0 0

0 −mrz 0 Ix 0 0

mrz 0 0 0 Iy 0

0 0 0 0 0 Iz


. (A.8)

This representation of inertia is however not sufficient, since a bulky
body in motion displaces quite a number of particles of the surrounding
fluid in its direction of movement. This phenomenon has a noticeable
impact on buoyant vehicles, which have by definition similar density as
their surrounding fluid. Therefore, the body experiences a resistance
to its motion, which is not accounted for by the standard rigid-body
inertia matrix described above. This additional effect is modelled by
including added mass and inertia terms into both inertia and Corio-
lis matrices. In short, ”added-mass” (sometimes also called ”virtual
mass”) is a measure of the additional inertia created by surrounding air
accompanying the airship. As in Fossen (1995), we propose a simple
modelling of the added-mass effect by introducing a diagonal added-
mass inertia matrix3:

MA = diag(mAx ,mAy ,mAz , IAx , IAy , IAz). (A.9)

Finally, we derive the global inertia matrix M as the sum of rigid-

3This is tenable in our case since indoor blimps are moving at very low speed
and we assume three planes of symmetry for the ellipsoidal hull, which is essentially
responsible for this effect, allowing to neglect the gondola added-mass. This reduction
is also motivated by the fact that off-diagonal elements are difficult to determine from
experiments as well as theory Fossen (1995). Note however that in general, for higher
speed and more complex shapes, coupling terms should be taken into account.
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Figure A.4: Identification of apparent translational mass.

body inertia and added-mass matrices:

M = MRB + MA =



m′
x 0 0 0 mrz 0

0 m′
y 0 −mrz 0 0

0 0 m′
z 0 0 0

0 −mrz 0 I ′x 0 0

mrz 0 0 0 I ′y 0

0 0 0 0 0 I ′z


, (A.10)

where m′
x := m + mAx, m′

y := m + mAy , m′
z := m + mAz , I ′x := Ix + IAx,

I ′y := Iy + IAy , and I ′z := Iz + IAz are respectively the apparent masses and
moments. Note that the shape of the envelope readily suggests that
mAx < mAy=̃mAz , IAx=̃0 and IAy=̃IAz (Munk, 1934). At this point, it could
be tempting to neglect the added mass and inertia, but one should be
aware that this phenomenon is responsible for an intrinsic instability of
airships (see section A.5) and omitting it would hardly lead to realistic
behaviour in simulation.

The identification procedure for M concerns only the 6 diagonal el-
ements, since the static mass is known and the distance rz has been
determined in section A.1. There are essentially two ways of tackling
the task and both will be described. A first approach, following the
philosophy of our approach, would be to directly measure the appar-
ent masses and moments as a whole, i.e., without dissecting them into
MRB and MA terms. Unlike for the damping coefficients, in this case,
we need acceleration in order to reveal inertia effects, which would be
null otherwise. The experiment consists therefore in setting the blimp
at a known velocity along a particular axis, then cutting off engines and
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Figure A.5: Identification of apparent momentum of inertia.

measuring the time it takes to travel along several chunks of known
distance while it decelerates (figure A.4). The only effects acting on
the airship during this free movement are inertia (which we want to
measure) and damping (which is already known from section A.3). The
equation describing this particular motion along, e.g., the x-axis can
be extracted from equation (A.1):

m′
xv̇x = FDx = −Dvxvx −Dv2

x
v2

x, with vx ≥ 0. (A.11)

This differential equation yields the following solution, where v0 is
the initial speed:

vx(t) = − Dvxe
Dvx t

m′
x v0

Dvx +Dv2
x
(1− e

Dvx t

m′
x )v0

, (A.12)

which we can be integrated to find the position over time:

x(t) =
m′

x log(
Dvx+D

v2
x
v0−D

v2
x
e

Dvx t

m′
x v0

Dvx
)

Dv2
x

. (A.13)

m′
x can then be numerically estimated so that x(t) best fits the points

recorded during experiments. The same procedure can be applied for
m′

y, m
′
z (note that m′

y=̃m
′
z), and I ′z, using equation (A.13) adapted to the

respective axis.
Rolling and pitching inertia are not identifiable that way, since full

rotations around those axes are not feasible. Fortunately, another ex-
periment exists for those axes, which consists in letting the blimp oscil-
late like a pendulum and measuring its eigen frequency (figure A.5). For
this experiment, we neglect damping effects and assume zero velocity
and acceleration for all axes excepted for the one we want to measure
the inertia. The equation describing this oscillating movement can be
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inferred from (A.1). Here is the result for the roll axis:

I ′xω̇x + rzFg sin(φ) = 0. (A.14)

Since the blimp is assumed to be steady except for the rotation
around its roll axis, we can set ω̇x = φ̈. Furthermore, assuming small
roll angles around equilibrium permits to approximate sin(φ) by φ. This
allows to rewrite equation (A.14) in the form of the well-known equa-
tion of the conservative oscillator with its eigen frequency denoted f0

and angular pulsation ω0:

φ̈+ ω2
0φ = 0, with ω0 :=

√
rzFg

I ′x
and f0 :=

1

2π
ω0. (A.15)

The experimental procedure thus consists in destabilising the air-
ship with a small roll angle and deriving f0 by simply counting the num-
ber of oscillations per time unit. Once the eigen frequency is known, I ′x
can be worked out from equation (A.15), with rz and Fg given in section
A.1. The same procedure holds for I ′y.

Although this method works very well for rolling and pitching mo-
ments of inertia, it has some drawbacks, especially for what concerns
its first part. On the one hand, the decelerating translational or rota-
tional movements of the airship are difficult to measure with precision.
On the other hand, equation (A.13) is quite heavy to handle and has
no analytical solution. Therefore, we propose an alternative method
relying more on theory than on experiments.

The second approach first proceeds by separating MRB and MA

terms. Since the distribution of masses on the airship is known, the
inertia tensor can be calculated explicitly (be aware not to forget the
inertia of the helium mass in the hull) and from it the full MRB ma-
trix can be derived. Added-mass factors populating MA can then be
estimated from a geometrical method based on the kinetic energy of an
ideal unbounded liquid around the ellipsoid in motion (here we assume
once again that the whole solid can be approximated by an ellipsoid of
revolution). The kinetic energy and the force necessary to accelerate
the airship can be computed by adding to the actual mass of the solid
a fictitious mass. This added-mass is equal to the density of the fluid
multiplied by a volume, which depends on the geometric outlines of the
airship only (Munk, 1934). These considerations result in the Lamb’s
k-factors (Lamb, 1932), where k1 and k2 are the inertia coefficients rep-
resenting the fraction of the mass displaced by the hull (which is in turn
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Figure A.6: Lamb factors as a function of the ellipsoidal hull aspect ratio
(adapted from (Munk, 1936)). With k1 the axial coefficient (x-axis), k2 the
lateral coefficient (y-axis) and k′ the rotational one (for yaw and pitch axes).

equal to the physical mass m of the airship if we assume that gravity
and buoyancy are balancing each other, see section A.1), whereas k′ is
the ratio of the apparent moment of inertia to the moment of inertia
of the displaced air Izh

. In the case of an ellipsoid of revolution with
semi-axes a and b (with a ≥ b), this moment of inertia is given by:

Izh
=

4

15
πρab2(a2 + b2). (A.16)

The added-mass terms can then be calculated using the Lamb’s k-
factors as follows:

mAx = k1m and mAy = mAz = k2m,

IAx = 0 and IAy = IAz = k′Izh
.

(A.17)

The Lamb’s k-factors are in turn defined using two constants α0 and
β0:

k1 = α0

2−α0
, α0 = 2(1−e2)

e3

(
1
2
ln1+e

1−e
− e
)
,

k2 = β0

2−β0
, β0 = 1

e2 − 1−e2

2e3 ln
1+e
1−e

,

k′ = e4(β0−α0)
(2−e2)[2e2−(2−e2)(β0−α0)]

.

(A.18)

where e designates the eccentricity of the ellipsoid:

e =

√
1−

(
b

a

)2

. (A.19)

Figure A.6 displays these k-factors as a function of the ellipsoid as-
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pect ratio, starting from the spherical case (a = b), ending with a very
slender hull having the long axis up to ten times the radius (a = 10b).
Interestingly, a spherical hull has already 50% added-mass in all direc-
tions and no additional moment of inertia (k′ = 0). With the increase in
aspect ratio, the axial added-mass (x-axis) tend to decrease, whereas it
augments in the lateral direction (y-axis). Note that alternative repre-
sentation of added-mass terms can be found in (Fossen, 1995; Khoury
and Gillet, 1999) and are equivalent to the one originally proposed by
Lamb. Further development for generic ellipsoids is also present in
(Lamb, 1932; Munk, 1934).

A.5 Coriolis and Centripetal Effects

Coriolis4 and centripetal effects are fictitious forces exerted on a body
in motion when the referential frame is not inertial, which is generally
the case for body-fixed frames. The Coriolis force is expressed as ω × v

and is only apparent when the motion is composed of linear and rota-
tional velocities. It explains the apparent force acting perpendicular to
the linear velocity vector and rotation axis, and tends to maintain the
initial direction of motion without taking care of the body rotation. The
centripetal force is given by ω× (ω×r) and is present in a rotating body
when the origin of the referential frame is not CG, which is the case
for FB. Since those fictitious forces are similar and both function of ν,
they are generally put together in this form:

FC = C(ν)ν, (A.20)

where C(ν) is the so-called Coriolis matrix. After (Sagatun and Fos-
sen, 1991), it is possible to directly derive the Coriolis matrix from the
inertia matrix as follows:

C(ν) =

(
O3×3 S(M11v + M12ω)

S(M11v + M12ω) S(M21v + M22ω)

)
(A.21)

where O3×3 is the null matrix, the operator S is defined in equation
(A.7), and Mij (i, j = 1, 2) are the four 3× 3 submatrices of the global in-
ertia matrix M indexed with row and column. The C(ν) matrix is given

4The Coriolis effect in our case is not the one due to Earth rotation since FE is
assumed to be an inertial reference frame.
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explicitly in footnote5. Using this theorem (based on Kirchhoff’s equa-
tions, theorem 2.2 in Fossen, 1995) to write the Coriolis matrix from
the inertia one, releases us from the burden of deriving and identifying
every Coriolis and centripetal effects for each of the 6 DOF. Moreover,
because the inertia matrix M includes the added-mass terms, C(ν) will
also take them into account, at no additional effort. This is of utmost
importance since it explains, among other effects, why an axial mo-
tion of hull shaped solid is intrinsically unstable. For instance, any
small angle between the x-axis and the direction of motion will tend
to increase (Munk, 1934). In such conditions, the difference between
m′

x and m′
y is responsible for (not cancelling) the yaw moment induced

by the Coriolis effects modelled in FC. This resultant unstable mo-
ment is proportional to the difference (k2 − k1) of the lateral and axial
k-factors given in equation (A.18) and shown in figure A.6. In other
words, the added-mass phenomenon not only explains why the appar-
ent inertia of the airship is higher than that predicted by MRB but is
also responsible, e.g., for quite surprising behaviours due to yaw mo-
ments appearing during forward motion. Note that the Coriolis matrix
also influences a number of other (maybe less significant) phenomena
like slight roll angle appearing during curved trajectories.
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Appendix B

Embedded Neural Network

B.1 PIC-compatible Neural Network (PIC-NN)

For our lightweight robots (chapter 3), the neural network must fit the
computational constraints of the embedded microcontroller (subsec-
tion 3.2.1). The PIC-NN (figure B.1a) is thus implemented using only
integer variables with limited range, instead of using high-precision
floating point values as it is usually the case when neural networks are
emulated on desktop computers.

Neuron activation values (outputs) are coded as 8-bit integers in the
range [-127,+127] instead of [-1,+1], which would not be tractable with-
out floating point data types. The PIC-NN activation function is stored
in a lookup table with 255 entries (figure B.1c) so that the microcon-
troller does not compute the tanh function at each update. Synapses
multiply activation values by an integer factor wij in the range [-7,+7]
which is then divided by 10 to ensure that a single input cannot totally
saturate a neuron by itself. The range has been chosen to encode each
synaptic weight in 4 bits (1 bit for the sign, 3 bits for the amplitude).
Although activation values are 8-bit signed integers, the processing of
the weighted sum (see figure B.1b) is done on a 16-bit signed integer
to avoid overflows. The result is then limited to [-127,+127] in order to
get the activation function result through the look-up table.

The PIC-NN is a discrete-time, recurrent neural network, whose
computation is executed once per sensory-motor cycle. Recurrent and
lateral connections take the pre-synaptic activation values from the
previous cycle as input. The number of input and internal units, the
number of direct connections from input to output, and the activation
of lateral and recurrent connections can be freely chosen.

Each synapse of a PIC-NN is encoded on 4 bits (section B.1). The
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corresponding binary genetic string is thus composed of the juxtapo-
sition of the 4-bit blocks, each represented by a gray square in the
associated connectivity matrix (figure B.1d).

B.2 Remote and Embedded Modes

Two modes are possible with the PIC-NN. In the first one, the process-
ing of the neural network is done in the supervising computer and the
robot is only used for reading sensors and setting motor commands.
We describe this mode as remote since the robot does not run its own
controller, but is remote-controlled by the supervising computer (figure
B.2a). In that case, the PIC-NN source code (written in C) is com-
piled within goevo. The second mode, called embedded, enables truly
autonomous operation at the end of the evolutionary process (figure
B.2b). In this mode, the supervising computer still handles the evolu-
tionary process (subsection 6.1.2), but the neural network is embedded
into the robot microcontroller.

The advantage of the remote mode is that the monitoring of the net-
work internal state is straightforward and it is easier to debug and mod-
ify the code. However, the need for sending all sensor values at every
cycle is a weakness because it takes some time (especially with vision)
and lengthens the sensory-motor cycle. Furthermore, once the evolu-
tionary process has ended the best evolved controller cannot be tested
without the supervising computer, the robot is not truly autonomous.
In contrast, in the embedded mode, there is a lack of visibility about
internal state of the controller, but the sensory-motor cycle time can be
reduced and once a genetic string is downloaded, the robot can work
on its own for hours without any communication with the off-board
computer.

In order to ensure the flexibility with respect to the type and the
phase of experiment to be carried out, both modes are possible within
our framework and can be used as required. It is also possible to do an
evolutionary run in remote mode and test good controllers in embedded
mode at the end. It is also very useful to have the remote mode when
working with a simulated robot that does not possess a microcontroller.



B.2. Remote and Embedded Modes 167

sum of neuron inputs

ne
ur

on
 a

ct
iv

at
io

n 
(o

ut
pu

t)

(I) internal (O) output

(I
) 

in
te

rn
al

(O
) 

ou
tp

ut

(B) bias 
unit

neurons

(S) sensor input units
from

to

self and lateral
connections,

if enabled

(S)

(I)

(O)

s  e  n  s  o  r    s  i  g  n  a  l  s

to motor control

ne
ur

on
s

self and lateral
connections,

if enabled

(a) PIC-NN example (c) Activation function Λ

(d) PIC-NN connectivity matrix

always connected

always connected
always

connect.

always
connect.

always connected
...

...

...

...

...

...
...

-128 -96 -64 -32 0   32 64 96 128
-128

-96

-64

-32

0

32

64

96

128

Σ

Λ

(b) Neuron computation

activation
value

synaptic
strengths

activation
function

sum

lin
ea

r z
on

e

saturation

saturation

x1 x2 xN...

w1 w2 wN

yi

Figure B.1: The PIC-NN. (a) Architecture of the PIC-NN. Sensor input units are
denoted S, input and output neurons are labelled I and O, respectively. The
bias unit B is not shown. In this example, recurrent and lateral connections
are present among output neurons. One input unit is directly connected to the
output units, whereas four other input neurons are connected to the internal
units. (b) Details of the computation occurring in a single neuron. Note that
only internal and output neurons have this computation. Input units have
an activation value proportional to their input. (c) Discrete activation function
implemented as a lookup table in the microcontroller. (d) The PIC-NN con-
nectivity matrix. Each gray square represents one synaptic weight. Each line
corresponds either to an internal or an output neuron. Every column corre-
sponds to one possible pre-synaptic unit: either neurons themselves ,or input
units, or the bias unit. The lateral and recurrent connections (on the diagonal
of the left part of the matrix) can be enabled on the internal and/or output
layers. In this implementation, the output neurons never send their signal
back to the internal or input layers. Input units can either be connected to
the internal layer or directed to the output neurons.
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(b) Embedded mode

Figure B.2: Two possible configurations for evolutionary runs. (a) Remote
configuration: the PIC-NN is run in the supervising computer that asks the
robot for sensor values at the beginning of every sensory-motor cycle and
sends back the motor commands to the robot. (b) Embedded mode: PIC-NN
is embedded in the robot microcontroller and communication occurs only at
the beginning of an evaluation and at the end.
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Dans la certitude de quels ciels,
au coeur de quels frêles espaces,
étreindre les chauds reflets de vivre ?

Frémis,
Matière qui t’éveilles,
scintille plutôt que ne luis,
tremble comme le milieu de la flamme,
Matière qui virevoltes et t’enfuis
et,
parmi les vents illimités de la conscience,
aspires à être...

Julien
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