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Abstract
We propose a novel feature mapping approach that is robust

to channel mismatch, additive noise and to some extent, non-
linear effects attributed to handset transducers. These adverse
effects can distort the short-term distribution of the speech fea-
tures. Some methods have addressed this issue by conditioning
the variance of the distribution, but not to the extent of conform-
ing the speech statistics to a target distribution. The proposed
target mapping method warps the distribution of a cepstral fea-
ture stream to a standardised distribution over a specified time
interval.

We evaluate a number of the enhancement methods for
speaker verification, and compare them against a Gaussian tar-
get mapping implementation. Results indicate improvements
of the warping technique over a number of methods such as
Cepstral Mean Subtraction (CMS), modulation spectrum pro-
cessing, and short-term windowed CMS and variance normal-
isation. This technique is a suitable feature post-processing
method that may be combined with other techniques to enhance
speaker recognition robustness under adverse conditions.

1. Introduction
In speaker verification applications, there is a need to extract
information from speech that is speaker specific and robust to
noise and various channel and transducer effects. Previously, a
number of methods for reducing these effects was proposed.
Cepstral Mean Subtraction [1] was applied to remove linear
channel effects and handset mapping techniques [2] were exam-
ined to reduce mismatch between types of telephone handsets.
Modulation spectrum analysis [3, 4] was also used to reduce
a number of these transducer and transmission channel effects,
but with limited robustness to additive noise.

For clean speech and matched conditions, there are a num-
ber of good performing features that are based on a cepstral
analysis. Under mismatched conditions these basic features will
become corrupted. To compensate for linear channel variations,
Cepstral Mean Subtraction [1] was noted as a promising ap-
proach. However, under additive noise conditions, the feature
estimates degrade significantly. An extension of this approach,
for speech recognition [5] and to some extent, for speaker ver-
ification [6], was proposed and involved normalising the distri-
bution of single cepstral features (over some specific window
length) by subtracting their mean and scaling by their stan-
dard deviation. For speech recognition, it was found that this
approach improved noise robustness and the effects of varied
channels by forcing a consistent mean and spread of the individ-
ual cepstral features. For the speaker verification paper, normal-

isation was applied over the whole utterance or over a relatively
small window of one second or less. This either limited the
robustness to noise variations by having a long normalisation
window, or reduced the resolution and response of the channel
compensation portion by use of a relatively shorter window (of
approximately 250-1000ms in length). A recent approach [7]
successfully examined the use of a neural network structure to
perform a non-linear mapping of (mean-removed) cepstral fea-
tures to establish an improved parameterisation for telephone
network speaker recognition. The neural network was trained
to discriminate speakers by modeling speech data from speak-
ers recorded over different handsets. The robustness of this ap-
proach across different recording environments other than what
the network was trained for is currently not investigated.

An important tradeoff for speaker features exists between
the quantity of unreliable information that can be removed from
the speaker features versus the speaker specific information that
can be preserved, to achieve optimal recognition. Thus, for
clean speech using the same microphone for recordings, many
of these enhancement techniques may actually reduce system
performance [8].

An application of interest for using more robust features is
automatic speaker verification over telephone networks. This
typically requires a number of feature enhancement techniques.
We propose a method that is robust to linear channel effects and
slowly varying additive noise. This is achieved by warping each
cepstral feature stream over a specified time interval to match a
specific target distribution. Typically, the true distribution of
a single feature is not of single mode. To accommodate this,
the source features may be mapped to an ideal distribution of
some form that may consist of multi-modal components. In
this paper, we will limit the analysis to single mode mapping,
although it is expected to limit performance.

The remainder of this paper discusses the cepstral feature
enhancement techniques to be examined and their robustness
to adverse conditions. We then propose the non-linear fea-
ture mapping technique followed by an analysis of the warping
method which indicates how the features are more robust to lin-
ear channel effects and additive noise. The normalised features
are then evaluated on the NIST 1999 telephone speech corpus
using a state-of-the-art speaker recognition system.

2. Robust feature enhancements
In this section we identify a number of standard techniques used
to improve the robustness of cepstral features to channel effects
for speaker verification over telephone networks.

Cepstral Mean Subtraction (CMS) [1] was one of the ear-
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lier and more effective methods of compensating cepstral fea-
tures for linear channel induced effects in speech. This method
removes linear channel effects by removing the mean cepstral
coefficient (for speech) from each feature over the duration of
the utterance. The effect of the linear channel may be reduced
by this method, but the average vocal tract configuration infor-
mation pertaining to the speaker is also lost. It was indicated
that using CMS on clean speech with matched transducer and
channel conditions degraded performance [8]. However, under
different channel environments, mean subtraction can improve
the core cepstral parameters significantly.

There is another class of feature processing that extracts rel-
evant information from the modulation spectrum. Some useful
feature processing techniques are (RelAtive SpecTrA) RASTA
[4] and a number of other related modulation spectrum analysis
methods. One approach is to filter the time-trajectories of the
filterbank log-energies to remove the less useful components.
For robust recognition performance, it was also noted in [3]
that the DC component of the log filterbank energies was less
useful for performing recognition. This relates to the success
that CMS has attained which is achieved by performing mean
cepstral feature removal. It was determined that the standard
RASTA processing algorithm was suitable for speech recog-
nition, but when applied to speaker verification, the specified
lower cut-off frequency removed significant portions of speaker
specific information. Followup investigations by these authors
indicated that important speaker specific information is present
at modulation frequencies down to 0.1Hz. An alternative modu-
lation spectrum processing approach [3] was implemented with
a 100 point Finite Impulse Response (FIR) Filter with a reso-
lution of 0.5Hz. An improvement was found by using the 100
point filter to attenuate the upper modulation frequencies above
10Hz, and mean subtraction to remove the DC component of
the features.

Another approach to address real-time applications of
speaker verification is based on Cepstral Mean Subtraction over
a relatively shortened window [9]. This window was longer
than mentioned in [3] (300 points at a frame rate of 100Hz), to
improve the lower modulation frequency cut-off band. There
are fast implementations available for performing channel com-
pensation over a sliding window.

An interesting extension of sliding mean removal is that of
normalising the speech features according to the mean and stan-
dard deviation of the features within the current sliding window
interval [5, 6]. Our experiments in Section 5 indicate significant
improvements over the mean cepstral subtraction approach us-
ing a three second window. This method exploits the effect that
additive noise will tend to reduce the variance of the cepstral
feature parameters.

3. Feature warping
The aim of feature warping is to construct a more robust rep-
resentation of the each cepstral feature distribution. This is
achieved by conditioning and conforming the individual cep-
stral feature streams such that they follow a specific target dis-
tribution over a window of speech frames. We introduce the
basic concept of the warping process, which is followed by a
derivation that indicates how warping can benefit verification
systems running in both additive noise and mismatched channel
environments. This is followed by a proposed solution to im-
plementing the general method with an overview of a specific
form of its implementation.

The basic structure of how warping integrates into the pa-

rameterisation process is identified in Figure 1. The process
begins by deriving the complete set of cepstral coefficients from
the speech segment. Each cepstral coefficient is then analyzed
independently as a separate feature stream over time for use in
the warping process. A (typically three second) window of fea-
tures is extracted from the feature stream and processed in the
warping algorithm to determine a mapped feature for the initial
cepstral feature in the middle of the window. The sliding win-
dow is shifted by a single frame each time and the analysis is
repeated.
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Figure 1: Block diagram of the parameterisation process.

For speech, the true distribution of a feature is speaker de-
pendent and multi-modal in nature. However, various channel
and additive noise influences can corrupt this distribution. We
aim to perform a mapping that will condition the feature dis-
tribution. To simplify the mapping we assume that the target
speaker features conform to a particular distribution type. Fig-
ure 2 indicates the mapping approach. Intuitively, this method
compensates in part for the linear channel in that the short-term
mean is removed, and attempts to conform the distributive shape
and spread to limit additive noise effects. This warping method
applied to cepstral features in speech, is similar in concept to
performing histogram equalization of picture pixel intensities
commonly used for image analysis.
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Figure 2: Warping of features according to a target distribution
shape.

3.1. Additive noise and linear channels effects

We now present an analysis of the effects that combined ad-
ditive noise and linear channel mismatch can have on cepstral
based features to provide an insight into how feature warping
can improve speaker recognition robustness.

The effect of the channel and additive noise on cepstral fea-
tures may be observed by analysis of the filterbank energies
to establish the Mel-Frequency Cepstral Coefficients (MFCCs)
[10] for each speech frame. The noise corrupted log-energy

, for filterbank k, may be specified by the composition
of linear channel and additive noise effects at each



frequency index i, determined by a complex Discrete Fourier
Transform (DFT) representation. (The clean signal is symbol-
ised by .) Each filterbank is assumed to be rectangular in
its filtering response, with discrete frequency indexes and

to indicate the start and finish frequency indexes for each
filterbank.

(1)

The channel effect may be isolated given the assumption
that the channel effect is consistent over the frequency range
of the filterbank. (ie.

) If the real and imaginary components of the
speech and noise are also independent, the filterbank energy
may be approximated as follows.

(2)

Let the filterbank energies be represented by and
for the speech and noise respectively for filterbank

k.

(3)

If this derivation is extended to cepstral features, and in par-
ticular MFCCs, the cepstral features become a weighted combi-
nation of the actual filterbank log-energies via the cosine trans-
form. This may be generalized by specifying the weights as

for filterbanks. Thus a resulting MFCC may
be represented by the approximation in Equation 4.

(4)

The linear channel effect may be attenuated by subtract-
ing the mean cepstral coefficient over the current sliding win-
dow, provided the window provides sufficient frequency reso-
lution. By observing Equation 4, a slowly changing additive
noise power component generally has the effect of reducing the
variance and distorting the distribution of the features. In ad-
dition, the effect of the additive noise changes the form of the
distribution and can skew the shape. This is in part due to its
variation in short-term signal-to-noise ratio. This is where fea-
ture warping is capable of conditioning the feature distribution.
Another advantage, is that no signal to noise power estimate is
required. The warping analysis in essence will map the upper
percentile of the source distribution to the upper portion of the
target distribution to limit the distribution skew caused by noise.

3.2. General implementation

This section describes the approach for implementing feature
warping. The goal of feature warping is to map the observed
cepstral feature distribution over a specified speech interval so
that the accumulated distribution is similar to a target distribu-
tion. Thus, the first phase of feature warping is to select a target
distribution to map the cepstral coefficients to. Since speech is

multi-modal in nature, the ideal target distribution would also
be multi-modal and representative of the speaker’s true feature
distribution. For this preliminary test, we examine only the sin-
gle mode mapping.

Once a suitable target distribution is selected, the parame-
terisation process can begin. The speech is parameterised us-
ing cepstral coefficients. Each cepstral feature is then treated
independently as its own stream of features. A window of
features in the feature stream is isolated and their values are
sorted in descending order. To determine a single warped fea-
ture element given the cepstral feature that exists in the centre of
the current sliding window, the ranking of the cepstral feature
within the sorted list is calculated. (The most positive feature
value obtains a ranking of while the most negative a ranking
of .) This ranking is used as an index in a lookup table to de-
termine the warped feature value. The lookup table is devised
so as to map a rank order determined from the sorted cepstral
feature elements to a warped feature using the desired warping
target distribution. The process is repeated for each frame shift
of the sliding window. Corresponding delta coefficients may
also be calculated at this point.

The lookup table used to perform the mapping is calcu-
lated prior to the parameterisation process using Equation 5,
with a generic target density function for a single warped fea-
ture stream variable , given by . Thus, given an point
analysis window, and the rank of the middle speech feature
in the current window, the general mapping function to match a
target distribution may be calculated. The lookup table (or
warped feature) may be determined by finding .

(5)

Computationally, this may be achieved by setting the rank
initially to , solving for by numerical integration, and
repeating for each decremented value of .

Note that the continuous form of Equation 5 that directly
maps a source cepstral feature (with measured distribution

) to the warped component (with distribution ) is
given by Equation 6.

(6)

This mapping approach may be considered as recognizing
the relative positions of each of the features as more important
rather than their absolute feature values.

3.3. Normal distribution warping

In this section we examine the method of mapping features to
match a normal target distribution. The warping is to map a
feature stream to a standard normal distribution, . As men-
tioned in Section 3.2, cepstral features are multi-modal in na-
ture and for optimal performance should be represented in a
multi-modal fashion. In this investigation we examine the sim-
plest of mappings, that of mapping to a normal distribution.
Consequently, suboptimal performance due to this simplifica-
tion is expected. The distribution of a normal curve is given.

(7)



The aim is to conform the distribution of the feature ele-
ments (over a sliding window) to a particular form such that
the resulting feature distributions may be made more consistent
across recording environments.
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Figure 3: Effect of additive noise on raw and warped cepstral
features.

Figure 3 indicates the effect of additive noise (simulated
by adding extracts of office noise from the NOISEX speech
and noise database) on both the raw cepstral features and their
warped versions using a Gaussian target mapping. It is ob-
served that the variance of the noise affected raw cepstral fea-
tures generally decreases with increasing noise level. The warp-
ing remaps the distribution to improve its shape, scale and posi-
tioning (see Figure 4).
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Figure 4: Histogram of raw and warped cepstral features with
and without additive noise (derived from the corresponding
data used for Figure 3).

4. Speaker modeling and classification
We discuss here the basic speaker verification system used for
evaluating the different feature conditioning methods. This sys-
tem consists of a Gaussian Mixture Modeling (GMM) adapta-
tion core to establish a speaker model for which various nor-
malisation techniques will be applied. The GMM models the
distribution of the features derived from the parameterisation
phase.

4.1. Parameterisation

The parameters typically used for speaker verification are cep-
stral based. In this system, Mel-Frequency Cepstral Coefficients
[10] are derived from mel-spaced filterbank log-energies. There
are 20 triangular filterbanks spanning the bandlimited region
with 12 MFCCs derived from these, using 32ms frames and a
10ms frame advance. Delta coefficients were also appended.
For the telephone speech evaluation, the speech was bandlim-
ited to 300-3200Hz.

4.2. Gaussian mixture modeling

Speaker training involves a two step process; a general Uni-
versal Background Model (UBM) [11] is trained on a large
quantity of exclusive speech, and a target speaker model is then
adapted from the gender specific UBM. The UBM is comprised
of a Gaussian Mixture Model formed from the contribution of a
large number of component mixtures determined from model-
ing a vast quantity of speech recorded from numerous speakers.

Gaussian Mixture Modeling is used for modeling the Prob-
ability Density Function (PDF) of a multi-dimensional feature
vector. A GMM forms a continuous density estimate of the
PDF of a multi-variate parameter by the additive composition
of multi-dimensional Gaussians. Given a single speech feature
vector , of dimension , the probability density of given an

Gaussian mixture speaker model , is given by

(8)

with a single Gaussian component density given as

(9)

where there is the additional constraint of
and represents the matrix transpose operator.

The UBM (comprised of 512 mixtures) is trained using the
Expectation-Maximisation Algorithm with model seeding per-
formed with a vector quantization pre-estimate [12].

Once the UBM is obtained, a speaker model may be estab-
lished by adjusting the UBM parameters by Bayesian Adapta-
tion [11]. Instead of maximising the likelihood of the limited
quantity of training speech, the Maximum Likelihood of the
information from the prior UBM with the new speech (with
different weightings applying to both) is determined to form
the posterior distribution model for that speaker. An adapta-
tion weight is used to describe the proportion of information
from the prior UBM distribution and the new data estimates that
should be contained in the posterior distribution. The mixture



means, weights and variances were adapted in this implementa-
tion. However, adapting only the mixture means will typically
improve results further.

4.3. Speaker classification

Speaker classification is achieved by testing the candidate
speech segment against the adapted target speaker model and
the UBM (in the form of a likelihood ratio test) and compar-
ing this figure against a threshold. The means by which speaker
scoring is performed is by calculating the expected frame-based
log-likelihood ratio of the target speaker model versus the Uni-
versal Background Model. This involves the calculation of both
a target speaker likelihood and the background speaker likeli-
hood.

Thus, given a set of independent and identically dis-
tributed feature vectors , the log-
likelihood of given a speaker model , is determined as

(10)

For a time normalised score, the expected frame-based log-
likelihood may be found. This normalisation alleviates some
of the problems associated with the assumption of observation
independence. For test trials, the set of speech feature vectors,

, is tested against both the adapted target model, , and
the UBM, , to determine an expected frame-based log-
likelihood ratio score.

(11)

This score for the comparison of a test segment with its tar-
get and background models is used for the basic speaker hypoth-
esis test. Other normalisations may also be applied to the like-
lihood ratio statistic to compensate for various recording mis-
matches.

4.4. Speaker normalisation

A number of methods are used to improve the recognition per-
formance under different recording contexts and conditions.
Some of these methods focus on handset compensation and test
segment normalisation. Handset compensation in this system is
based on the Handset Normalisation (H-Norm) approach [11].
This compensation approach normalises a test segment score
according to the derived handset class of the test utterance. Two
handset classes were specified; carbon and electret. During the
target speaker training process, the mean and standard devia-
tion of the scores from a large number of standard handset test
speech segments were recorded for both the carbon and electret
scenarios. These two sets of statistics were used for normalising
the test segment score.

An improvement on the likelihood ratio test combined with
H-Norm is the inclusion of Test segment Normalisation (T-
Norm) [13]. T-Norm uses the scores derived from testing the
utterance against a set of standard models to adjust the target
speaker score. This score is also normalised by the mean and
standard deviation.

Both the H-Norm and T-Norm approaches are used in the
following telephony system experiments.

5. Results
In this study, we examine the application of feature warping to
speaker verification over telephone networks. We compare the
methods identified earlier in Section 2 to observe their perfor-
mance in adverse environments. For this evaluation, the NIST
1999 Speaker Recognition Evaluation database was used. (For
further information see [14]). This database includes a collec-
tion of 230 male and 309 female target speakers, each provid-
ing approximately two minutes of training speech. There are
1448 male and 1972 female test segments of up to one minute
in length.

The Detection Error Trade-off performance criteria [15]
was selected to grade the systems examined for the evaluation.
It represents the tradeoff error probability between false alarms
and missed target speaker decisions.

In Figure 5 there are three separate classes of evaluations
for each feature processing technique. The scores from the tests
are partitioned according to if the target speaker used the same
handset or telephone number in the training conversation as that
used for the test call. The three criteria from the poorest to best
performing include; same number and telephone, same number
but different telephone, and different number and telephone.
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Figure 5: The NIST 1999 DET curve performances for different
feature channel compensation methods.

Figure 5 compares a number of feature enhancements eval-
uated for a number of different phone number and handset con-
ditions. For clarity, only the more contrasting techniques men-
tioned earlier are shown. (Sliding window mean removal was
not included due to it having similar results to the segment
length cepstral mean subtraction method).

As indicated, the warping approach over the majority of the
error curves gives the best result, with significant improvements
in error at low false alarm probabilities. The plots indicate that
the warping method performs reliably all cases in contrast to
the other algorithms. The warping approach is generally the
better performing for each of the three classes of tests, whereas



a number of enhancement methods achieve improved results for
one test and relatively degraded results for the others.

For the combined result using all tests, modulation spec-
trum processing is comparable in performance to the mean and
variance normalisation on the network corpus (with the best re-
sult obtained using warping). Thus, modulation processing can
be suitable for improving channel and handset mismatch, but it
is also sensitive to additive noise. Feature warping and mean
and variance normalisation are more robust to such effects.

Worthy of note is the degradation caused by not includ-
ing linear channel compensation for telephony recordings. At
20% false alarm probability for the different number and hand-
set condition, the basic MFCCs have almost twice the error rate
of the next poorest performing method.

In addition to this experiment, we performed an evaluation
of the effect of adapting only the mixture means in contrast to
adapting all model parameters. The overall equal error rate was
reduced further from 9.4% to 8.3%. This result indicates the im-
portance of restricting model adaptation parameters given lim-
ited adaptation training data, and the broad suitability of feature
warping to various classifier configurations.

6. Conclusion
It was found that cepstral based feature vector warping using a
Gaussian target distribution is an effective method of reducing
the effects of mismatch. Under adverse conditions, performance
can be enhanced by conditioning the short term distribution of
the individual cepstral features to a standardised distribution.
The robustness of the feature processing to slowly changing ad-
ditive noise characteristics and linear channel effects are attrac-
tive traits. The proposed implementation also permits its use
in real time applications. It is pointed out that improved warp-
ing may be achieved by selection of a more appropriate target
distribution that may also be speaker specific. The additional
advantage of the approach is that it may be cascaded with other
feature enhancement techniques such as some forms of modu-
lation spectrum processing and non-linear neural network map-
ping approaches.
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